May 8, 2023 TCTAP2023 Meet the Experts over Breakfast Left Main & Multi-Vessel Disease Revascularization

The Impact of Stent Reduction Strategy in LMT Bifurcation Lesion with DCA and DCB

<u>Masaaki Okutsu</u>, Sunao Nakamura Department of Cardiovascular Medicine New Tokyo Hospital, Matsudo, Japan

Disclosure

• The authors have **NO** financial conflicts of interest to disclose concerning the presentation.

Directional Coronary Atherectomy

Balloon Cutter

Adjust window direction, balloon inflation, start motor drive and advance rotating cutter to cut plaque

DCA basic procedure

First step; test cut @1atm

Test cut and check IVUS

First step; test cut @1atm

28th TCTAP

Repeat actual cut and check IVUS

Next step; gradual increasing pressure $2 \rightarrow 3 \rightarrow 4$ atm step by step

28th TCTAP

Our hospital data of DCA followed by DCB for LMT bifurcation lesion

More than 6-month follow up cases

	n=24		n=24
Diagnosis		Final procedure (LMT-LAD/LCX)	
Chronic coronary syndrome	17 (70.8%)	No stenting	
Acute coronary syndrome	7 (29.2%)	DCA+DCB / none	17 (70.8%)
Bifurcation type		none / DCA+DCB	1 (4.2%)
True bifurcation		DCA+DCB / DCA+DCB	2 (8.3%)
1,1,1	2 (8.3%)	Single stenting	
1,0,1	1 (4.2%)	DES / DCA+DCB	4 (16.7%)
0,1,1	2 (8.3%)	Clinical event	
0,0,1	1 (4.2%)	All cause death	1 (4.2%)
Non-true bifurcation		MI	0 (0%)
0,1,0	12 (50.0%)	ischemia driven TLR	1 (4.2%)
1,0,0	1 (4.2%)	TVR	4 (16.7%)
1,1,0	5 (21.8%)		

Our hospital data of DCA followed by DCB for LMT bifurcation lesion

More than 6-month follow up cases

QCA	n=24	IVUS	n=24
Pre procedure		Pre procedure	
Lesion length, mm	15.9±7.6	MLA, mm ²	2.9±1.8
RVD, mm	3.6±0.6	VA, mm ²	15.3±5.3
MLD, mm	1.2±0.5	PA, %	81.0±9.8
DS, %	66.3±14.3	Post procedure	
Post procedure		MLA, mm ²	10.5±2.9
RVD, mm	3.6±0.7	VA, mm ²	17.7±4.9
MLD, mm	3.1±0.6	PA, %	40.0±9.6
DS, %	14.3±11.3	Acute gain, mm ²	7.6±3.1
Acute gain, mm	1.8±0.8	ОСТ	n=24
6M-follow-up		Pre procedure	
RVD, mm	3.6±0.7	MLA, mm ²	2.2±1.3
MLD, mm	2.6±0.7	Post procedure	
DS, %	29.3±19.8	MLA, mm ²	8.9±2.8
Late lumen loss, mm	0.5±0.7	Acute gain, mm ²	6.8±2.8
all the second second		6M-follow-up	

MLA, mm²

Late lumen loss, mm²

6.8±3.3

 2.2 ± 2.5

Our hospital data of DCA followed by DCB for LMT bifurcation lesion

More than 6-month follow up cases

QCA	n=24	IVUS	n=24	
Pre procedure		Pre procedure		
Lesion length, mm	15.9±7.6	MLA, mm ²	2.9±1.8	
RVD, mm	3.6±0.6	VA, mm ²	15.3±5.3	
MLD, mm	1.2±0.5	PA, %	81.0±9.8	
DS, %	66.3±14.3	Post procedure		
Post procedure		MLA, mm ²	10.5±2.9	
RVD, mm	3.6±0.7	VA, mm ²	177+4.9	
MLD, mm	3.1±0.6	PA, %	40.0±9.6	
DS, %	14.3±11.3	Acute gain, mm ²	7.6±3.1	
Acute gain, mm	1.8±0.8	ОСТ	n=24	
6M-follow-up		Pre procedure		
RVD, mm	3.6±0.7	MLA, mm ²	2.2±1.3	
MLD, mm	2.6±0.7	Post procedure		
DS, %	29.3±19.8	MLA, mm ²	8.9±2.8	
Late lumen loss, mm	0.5±0.7	Acute gain, mm ²	6.8±2.8	
		6M-follow-up		

MLA, mm²

Late lumen loss, mm²

6.8±3.3

 2.2 ± 2.5

DCA can reduce or avoid stent use.

For bifurcation lesions

Conventional advantages of no stent strategy for LMT bifurcation

- Complete discontinuation of antiplatelet therapy
- Free from flow dynamics limitation by stent strut at LCX ostium
- Free from tissue bridging formation on stent strut at LCX ostium
- No carina shift
- No problem related to vessel size gap between LMT and LAD

Unique advantages of no stent strategy with DCA

Vessel enlargement

Original lumen

Cut Atheroma

(Shigeru Nakamura, et al. Am Heart J 1995)

Vessel area change after DCA+DCB

Both positive and negative remodeling vessel increased in area once and then decreased.

Vessel remodeling index after DCA+DCB

Both positive and negative remodeling lesions are returning to its original vessel size.

Reverse remodeling after DCA+DCB

Positive remodeling lesion at baseline

SeQuent Please 3.0/20mm

Positive remodeling \rightarrow **Negative reverse remodeling**

Negative remodeling lesion at baseline

<u>Negative remodeling \rightarrow Positive reverse remodeling</u>

Can DCA rewind time?

Conclusion

- DCA has one unique advantage of reverse remodeling towards normal vessel size in both positive and negative remodeling lesions at baseline.
- DCA might have the effect of winding back the advancing clock of the atherosclerosis.
- This phenomenon needs further verification of the effect for LMT lesions, but DCA+DCB strategy may be one additional option.

