TEER Guidance for New Centers

Patient Selection for MitraClip : DMR and FMR

Sung-Ji Park, MD, PhD **Director of HVSI Imaging Center,** Heart Vascular Stroke Institute, Samsung Medical Center, Sungkyunkwan University School of Medicine

Sungkyunkwan University School of Medicine

SAMSUNG SAMSUNG MEDICAL CENTER

Outlines

1

2 Anatomically suitable MV anatomy for TEER

SAMSUNG MEDICAL CENTER

Outlines

2 Anatomically suitable MV anatomy for TEER

SAMSUNG MEDICAL CENTER

Current Guideline

SAMSUNG MEDICAL CENTER

Sungkyunkwan University School of Medicine

Current Guideline

2020 ACC/AHA Guideline for the Management of Patients With Valvular Heart Disease

SAMSUNG MEDICAL CENTER

TEER Highlights from ACC/AHA VHD Guidelines

• TEER for primary MR

- -2014 Class 2b \rightarrow 2020 Class 2A
- Recommendation of TEER expanded to include surgical high-risk pts
- Condition for optimal GDMT for pts is removed

TEER for secondary MR

- **New 2020 Class 2A**
- Recommended for a COAPT-like subsets for severe 2ndary MR pts.
 - 20%<LVEF<50%, LVESD ≤ 70mm, PASP ≤ 70mmHg
 - Persistent symptoms while GDMT
- Optimal GDMT by a cardiologist expert

COAPT criteria Indication CoR IIa LoE B for M-TEER in SMR

- Severe SMR Optimised HF treatments according to 2021 ESC guidelines - NYHA Class II, III or ambulatory IV

- LVEF 20-50%
- LV end-systolic diameter ≤70 mm
- At least one HF hospitalisation within the previous year or increased NP levels^a
- Anatomy judged suitable for M-TEER^b

- Haemodynamic instability^c
- Stage D HF^d
- Moderate or severe RV dysfunction
- Systolic pulmonary pressure >70 mmHg
- COPD requiring oxygen or steroid
- Coronary, aortic or tricuspid valve disease requiring surgery
- Hypertrophic, restrictive or infiltrative cardiomyopathy

FMR : Proportionate and Disproportionate MR

MITRA-FR like subset Proportionate MR

COAPT like subset Disproportionate <u>MR</u>

LV 75.9/63.1 mm LVEF 29% ERO 0.57 cm² RV 55.8 ml

JAMA Cardiol. doi:10.1001/jamacardio.2019.5971

LV 59.8/42 mm LVEF 49% ERO 0.33 cm² RV 51.2 ml

Determinants of TEER efficacy in FMR

Optimal	Conditionally suitable	
NYHA class II-III	NYHA class IV	NYH
Non-ischemic CMP	Ischemic CMP	ICMI (>30
Disproportionate MR EROA/LVEDV ratio ≥ 0.14 LVEDV index <96mL/m ²	Proportionate MR	Adva ERC
Preserved RV function	RV dysfunction with CR	RV c
No pulmonary hypertension	Reversible pul.HT	Irrev
ECV on cardiac MR <30%	ECV on cardiac MR >30%	NT p

Adapted from Front. Cardiovasc. Med. 2021;8:585415

Unsuitable

- A class IV, frequent HHF
- P with large infarct size %)
- anced LV ds (pVO2<10ml/kg/min) OA/LVEDV ratio ≤ 0.12
- dysfunction without CR
- versible pul.HT
- oroBNP>10,000 pg/mL

Outlines

2 Anatomically suitable MV anatomy for TEER

Assessment of TEER during procedure 3

SAMSUNG MEDICAL CENTER

Suitable MV morphology for TEER

2020 Focused Update of 2017 ACC expert consensus decision pathway

TABLE 7	Feasibility of Tra	inscatheter Edge-to-Edge Clip Repair	
		Favorable Features*	Less
Location of Le	eaflet Pathology	Noncommissural pathology (medial, middle, lateral segments)	Commissural segm
Calcification		No or minimal calcification	 Severe leaflet zone Severe annula
Mean MV Gra	dient	Transmitral gradient <4 mm	Mitral stenosis (rhe
MVA		MVA \geq 4.0 cm ²	$MVA < 4.0 \text{ cm}^2$
Grasping Zone	e Length	>10 mm	<7 mm
		TISO.2 MIO	TEE X8-2t 27Hz 11cm xPlane 45% 4383 P Off Gen Gen PAT T: 37.0C

Area 5.46 cm²

MVA 5.46 cm2

SAMSUNG MEDICAL CENTER

P2 length= 1.30 cm

Favorable or Unfavorable Features*

nents, leaflet perforations, or clefts

calcification or calcification in area of grasping

r calcification

eumatic or calcific; mean mitral gradient >5 mm Hg)

JACC 2020;75:2236-70

Suitable MV morphology for TEER

2020 Focused Update of 2017 ACC expert consensus decision pathway

SAMSUNG MEDICAL CENTER

Criteria for MV-TEER

Complexity of valve morphology and center experience as criteria for MV-TEER

Repair! Anatomical suitability for M-TEER				
Non-o Ideal fo	complex or M-TEER	Complex Suitable for M-TEER	Very comple Challenging for M	
- Central pathol - No calcificatio - MVA >4.0 cm ⁴ - Posterior leafle - Tenting height - Flail gap <10 - Flail width <1	logy et >10 mm : <10 mm mm 5 mm	 Isolated commissural lesion (A1/P1 or A3/P3) Annular calcification without leaflet involvement MVA 3.5-4.0 cm² Posterior leaflet length 7-10 mm Tenting height >10 mm Asymmetric tethering²⁶ Coaptation reserve <3 mm²⁴ Leaflet-to-anulus index <1.2²⁵ Flail width >15 mm Flail gap >10 mm Two jets from leaflet indentations 	 Commissural lesion w jets Annular calcification w involvement Fibrotic leaflets Wide jet involving the coaptation MVA 3.0-3.5 cm² Posterior leaflet length Barlow's disease Cleft Failed surgical annulo 	

SAMSUNG MEDICAL CENTER

Favorable MV morphology for TEER : DMR

Primary MR

85/F Primary MR

SAMSUNG MEDICAL CENTER

Favorable MV morphology for TEER : FMR

Secondary MR

Coaptation depth <11mm Coaptation length ≥ 2mm

Coaptation depth : distance from the point of coaptation to the annular plane

Coaptation length : length of residual leaflet below the point of coaptation

JASE 2018;31:434-53

SAMSUNG MEDICAL CENTER

76/F HFrEF with severe Secondary MR

LV 75.9/63.1 mm, LVEF 29%

Favorable MV morphology for TEER : FMR

76/F HFrEF with severe Secondary MR

1st MitraClip(XTW) implantation

LV 75.9/63.1 mm, LVEF 29%

SAMSUNG MEDICAL CENTER

2nd MitraClip(NTW) implantation

Unfavorable MV morphology for TEER : DMR

81/M Primary MR, AF

SAMSUNG MEDICAL CENTER

Primary MR

Flail width <15mm Flail gap < 10mm

A 1 & A2 prolapse with chordae rupture

=> MVR & Maze OP

73/F Primary MR, ESRD on HD

SAMSUNG MEDICAL CENTER

P1 prolapse with chordae rupture Leaflet thickening and chordae calcification

Less Favorable or Unfavorable Features*

Commissural segments, leaflet perforations, or clefts

Severe leaflet calcification or calcification in area of grasping

Severe annular calcification

73/F Primary MR, ESRD on HD

SAMSUNG MEDICAL CENTER

0 (Derived)

TEE X8-2t 10Hz 9.7cm

3D Zoom

Gen XRES ON

PAT T: 37.0C TEE T: 38.0C

3D Beats 1

60 180

1st Clip (XT) 2nd Clip (XT)

74/M Atrial MR, HCMP(1997 Dx), AF (1997 Dx) **Rt. MCA Inf (2009 Dx)**

LV 57.3/36.3 mm

EF 62%

LAVI=269.2 ml/m²

SAMSUNG MEDICAL CENTER

74/M Atrial MR, HCMP(1997 Dx), AF (1997 Dx)

SAMSUNG MEDICAL CENTER

74/M Atrial MR, HCMP(1997 Dx), AF (1997 Dx) **Rt. MCA Inf (2009 Dx)**

Case : LJS Transthoracic Echocardiography

Date : 2023-01-14

Post. MV annulus calcification & slightly prolapsed AMVL with severe eccentric MR

MR PISA r= 0.92cm, MV ERO= 40.5mm², MR RV= 50.38ml, MR RV by vol= 45ml, Pulmonic vein systolic reversal flow : (-) LV size : LVIDd = 57.3mm, LVIDs = 36.3mm

LVEDV= 161.93ml, LVESV= 60.02ml)

- LVEF : 62.9%, LA : 85.5mm, LAVI : 262.9ml/m²
- RV systolic pressure : 45.7mmHg
- Aortic regurgitation : minimal
- Mitral regurgitation : moderate to severe
- Tricuspid regurgitation : mild

Case : LJS Transesophageal Echocardiography

- Date : 2023-01-16
- 1) Severe MR with PMVL tethering (P2 portion)
- 12. MitraClip information
- PMVL tethering (P2 portion)
- Non-coaptation gap: max 0.4cm
- PMVL length : 1.1~ 1.23cm
- Septal puncture height : >4.5cm
- MV area : 5.48cm², 7.03cm², meanPG : 2.8mmHg
- Limitation : Huge LA, PFO

-- Posterior annulus calfication, calcification on chorda -- PISA radius= 1.06cm, MV meanPG= 2.8mmHg -- Systolic reversal flow into LAA (+), left pulmonary vein (+)

74/M Atrial MR, HCMP(1997 Dx), AF (1997 Dx)

Atrial fMR Huge enlarged LA (LAVI 262.9 ml/m²) Multiple jets at A2/P2 (1.5, 2.5) NonCoaptiation gap 3~4mm

plan : 1st Clip with XTW at 1.5 area 2nd Clip with XTW at 2.5 area Septal puncture; Inferior-posterior as much as possible

MitraClip[™] G4 NT/NTW MitraClip[™] G4 NT/X (C) 9 mm 4 mr MitraClip[™] G4 XT/XTW MitraClip[™] G4 NTW/XTW 6 m 18 mm and the second

74/M Atrial MR, HCMP(1997 Dx), AF (1997 Dx)

1st Clip (XTW) at 1.5 area

SAMSUNG MEDICAL CENTER

74/M Atrial MR, HCMP(1997 Dx), AF (1997 Dx)

2nd Clip (XTW) at 2.5 area

1st Clip (XTW) at 1.5 area 2nd Clip (XTW) at 2.5 area

SAMSUNG MEDICAL CENTER

Special Thanks to SMC SHD TEER team

Imaging team

Jihoon Kim

Intervention team

Joo Yong Hahn

Ki Hong Choi

VHD Anesthesiology team

VHD surgery team

Dong-Seop Jeong

Suryeun Chung

Selection of the optimal candidate for MitraClip is the best way to succeed in the procedure.