



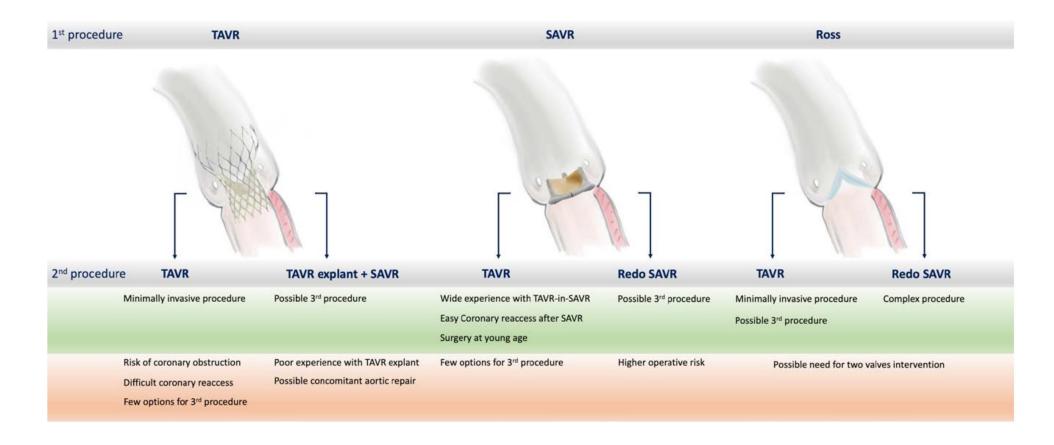


**Keynote Spotlight on TAVR2023** 

A Paradigm Shift to Valve-in-Valve: 1st, 2nd, and more Valves

Prof. Dr. Nicolas M. Van Mieghem
Professor and Director of Interventional Cardiology
Thoraxcentrum, Erasmus University Medical Center
Rotterdam




### **Conflict of Interest**

>Research Grant Support: Abbott, Boston Scientific, Edwards
Lifesciences, Medtronic, PulseCath, Daiichi Sankyo, Teleflex,
Siemens, Pie Medical

>Consultancy: Abbott, Boston Scientific, Medtronic, PulseCath,
Daiichi Sankyo, Amgen, Teleflex, Abiomed, Pie Medical, Anteris,
JenaValve, Materialise

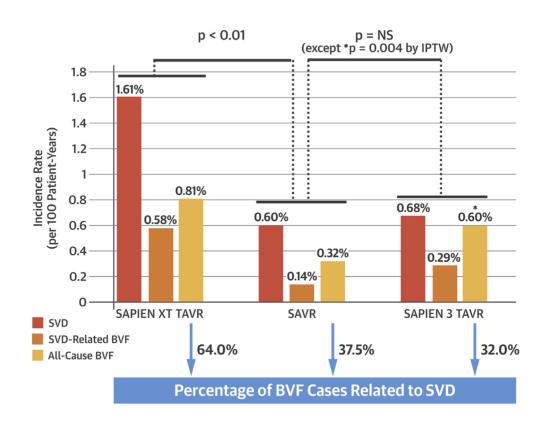


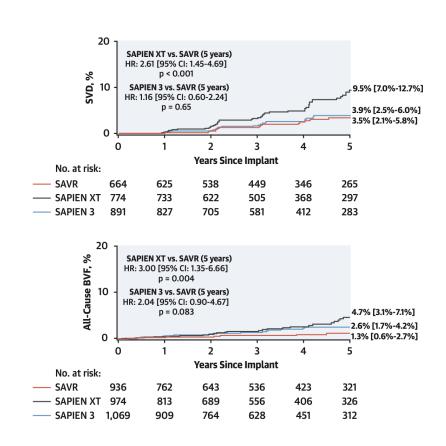
## **Lifetime Management Considerations**



**TAV-in-TAV unchartered territory** 



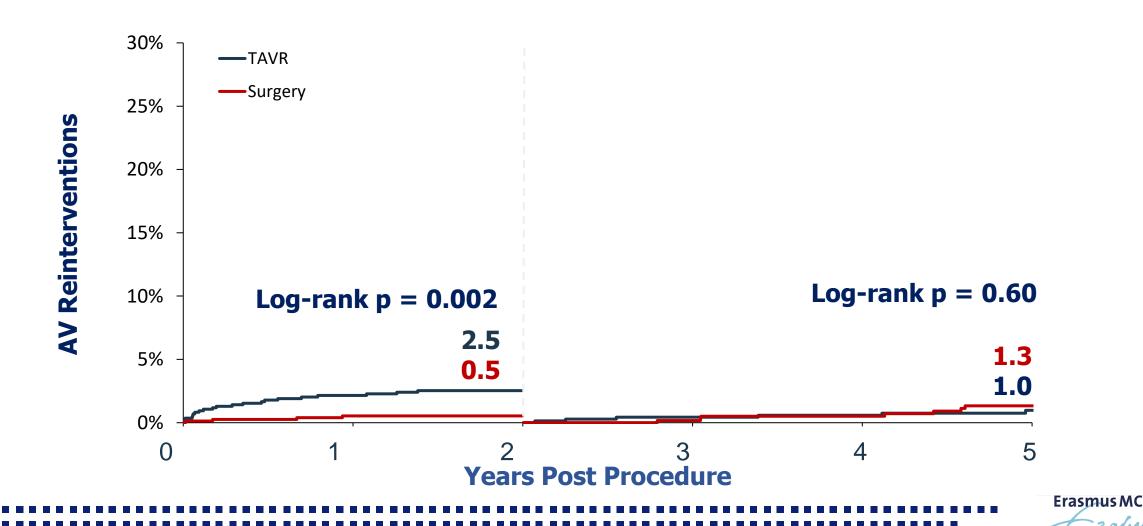

**Durability & Need for Revalving** 


Erasmus MC 2 afus

### **Durability Preview**



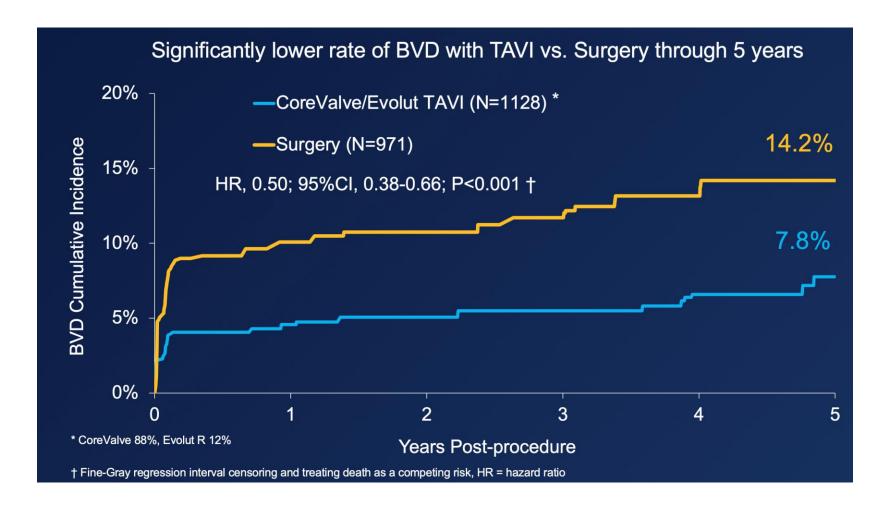
#### **SAPIEN XT platform – PARTNER II**






> THV Platform may matter in terms of durability

Erasmus MC Zafung


## **SURTAVI - Self expanding THV 2-Year Landmark Reinterventions**



# **Bioprosthetic Valve Dysfunction**

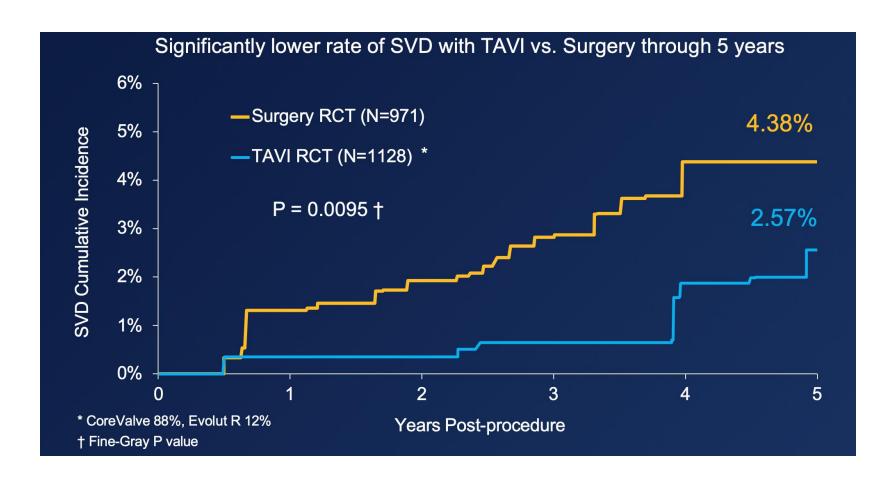


- **>** Age 80.9 years
- ➤ Male 55%
- **> STS 5.2**





# **Bioprosthetic Valve Dysfunction**

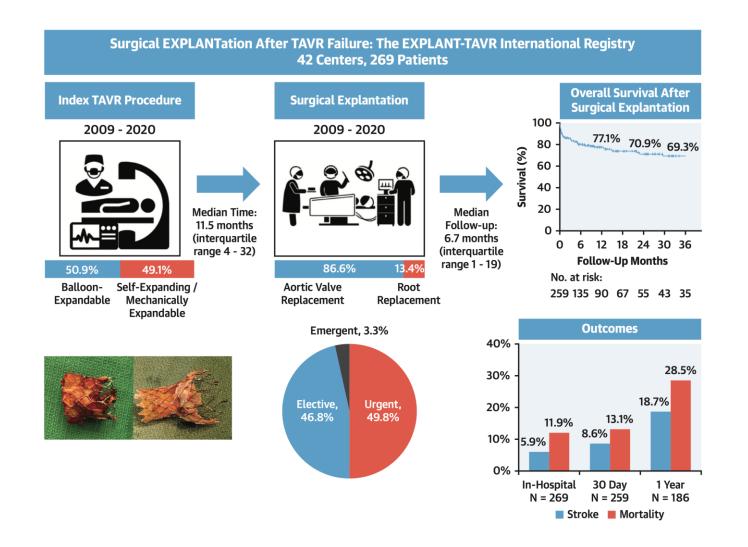

|                               | CoreValve/Evolut<br>TAVI (N=1128) | Surgery<br>(N=971) | HR (95% CI)         | P value |
|-------------------------------|-----------------------------------|--------------------|---------------------|---------|
| BVD, %                        | 7.8                               | 14.2               | 0.50 (0.38, 0.66)   | <0.001  |
| SVD                           | 2.2                               | 4.4                | 0.46 (0.27, 0.78)   | 0.004   |
| NSVD *                        | 4.3                               | 8.8                | 0.48 (0.33, 0.68)   | <0.001  |
| Severe PPM (30-day/discharge) | 3.7                               | 11.8               | 0.29 (0.19, 0.43) † | <0.001  |
| Severe PVL                    | 1.2                               | 0.2                | 5.51 (1.24, 24.41)  | 0.02    |
| Thrombosis                    | 0.3                               | 0.2                | 1.26 (0.21, 7.62)   | 0.80    |
| Endocarditis                  | 1.1                               | 1.3                | 0.85 (0.38, 1.88)   | 0.68    |

Erasmus MC z afuns

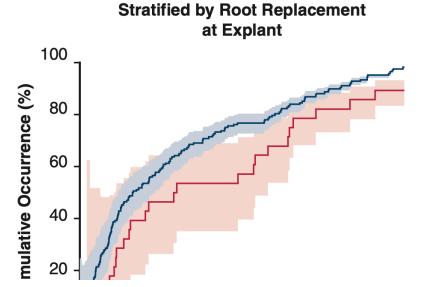
### **Structural Valve Degeneration**



- > Age 80.9 years
- ➤ Male 55%
- **> STS 5.2**







**Failing Transcatheter Heart Valve** 

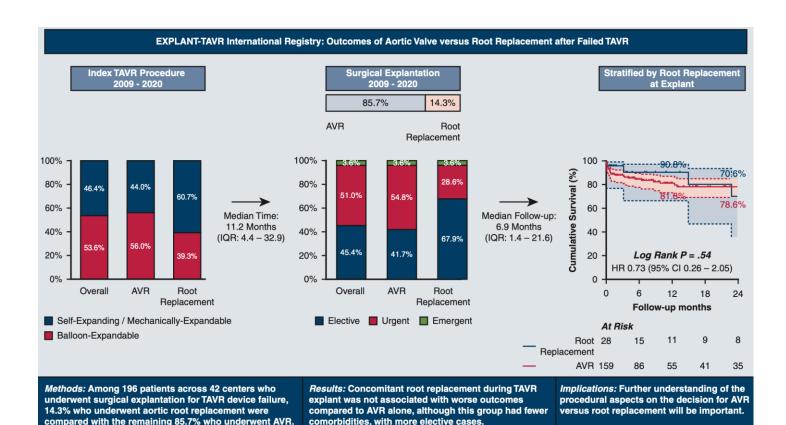
Erasmus MC zafus

### **EXPLANT TAVR Registry**



### **EXPLANT TAVR Registry – Time to explant**




Longer time to explant = associated with higher likelihood for concomitant root replacement

Time to TAVR - Explant (months)

|                 | AVR               | Root Replacement  | P value |
|-----------------|-------------------|-------------------|---------|
| Median Interval | 9.9               | 17.6              | .047    |
| (months)        | (IQR: 3.9 - 27.0) | (IQR: 6.8 – 39.0) | .047    |



### **EXPLANT TAVR Registry – Need for root replacement**



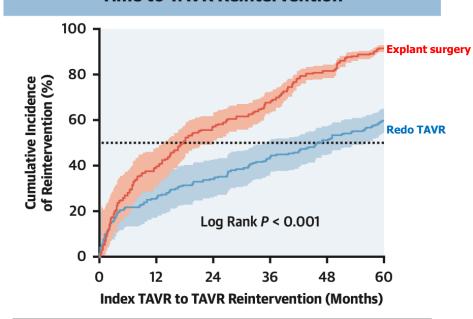
- > THV design determines explant surgery technique
- > Different interaction with the surrounding structures
  - Standard aortotomy more feasible with BEV
  - Higher aortotomy with taller stent frame in SEV
- > Removal of the prosthesis may require
  - Blunt dissections from aorta, mitral valve and conduction tissue
  - **Crimping the stent frame**
- > root replacement = more with SEV vs. BEV
  - √ (18.7% vs 10.5%; P 1/4 .11)

Erasmus MC

### **Explant SAVR vs. Redo TAVI for failing THV**

- > EXPLANTORREDOTAVR Registry
- **→ Time window 2009 2022**
- > N = 396
  - Explant surgery n = 181
  - $\circ$  Redo TAVI n = 215
- > THV failure excluding endocarditis
  - o SVD
  - o Non-SVD
  - **O THV thrombosis**
  - Delayed THV migration
- **Exclusion** 
  - Endocarditis
  - o Bail-out interventions during index admission

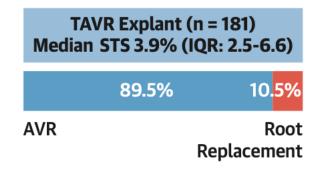
|                                                               | Overall $(N=396)$                               | Redo-TAVR<br>(n = 215)                          |                                                | P Value |
|---------------------------------------------------------------|-------------------------------------------------|-------------------------------------------------|------------------------------------------------|---------|
| Age, y                                                        | 75.5 ± 9.3                                      | $78.6\pm8.4$                                    | 72.1 ± 9                                       | <0.001  |
| Female                                                        | 162 (40.9)                                      | 95 (44.2)                                       | 67 (37)                                        | 0.15    |
| Frailty                                                       | 106 (34.3)                                      | 53 (36.3)                                       | 53 (32.5)                                      | 0.55    |
| Pulmonary hypertension                                        | 95 (25.5)                                       | 47 (23.2)                                       | 48 (28.2)                                      | 0.28    |
| Chronic kidney disease                                        | 152 (40.6)                                      | 76 (37.4)                                       | 76 (44.4)                                      | 0.17    |
| Dialysis-dependent                                            | 29 (7.6)                                        | 16 (7.9)                                        | 13 (7.3)                                       | 1.00    |
| Chronic obstructive pulmonary disease                         | 94 (24.7)                                       | 48 (23.6)                                       | 46 (26)                                        | 0.63    |
| Hostile chest or chest deformity                              | 45 (13)                                         | 24 (14)                                         | 21 (12.1)                                      | 0.63    |
| Calcified aorta                                               | 61 (16.2)                                       | 50 (24.5)                                       | 11 (6.4)                                       | < 0.001 |
| Left ventricular ejection fraction, %                         | 51.8 ± 13                                       | 52.7 ± 12.4                                     | $50.9 \pm 13.6$                                | 0.21    |
| Prior permanent pacemaker/ICD                                 | 82 (21.5)                                       | 41 (20.2)                                       | 41 (23)                                        | 0.53    |
| Prior PCI                                                     | 63 (17.4)                                       | 10 (5.4)                                        | 53 (29.6)                                      | < 0.001 |
| BSA                                                           | $1.9\pm0.3$                                     | $1.9\pm0.4$                                     | $2\pm0.3$                                      | 0.017   |
| NYHA functional class<br>at initial TAVR                      |                                                 |                                                 |                                                | 0.003   |
| 1<br>2<br>3<br>4                                              | 9 (2.7)<br>73 (22.0)<br>197 (59.3)<br>53 (16.0) | 2 (1.2)<br>29 (17.9)<br>112 (69.1)<br>19 (11.7) | 7 (4.1)<br>44 (25.9)<br>85 (50.0)<br>34 (20.0) |         |
| Previous cardiac surgery                                      | 135 (38.4)                                      | 47 (27.2)                                       | 88 (49.2)                                      | < 0.001 |
| STS PROM, %                                                   | 3.2 (2.2-5.1)                                   | 3.5 (2.3-5.8)                                   | 3.1 (2.1-4.9)                                  | 0.11    |
| Heart team risk stratification<br>Low<br>Intermediate<br>High | 36 (14.3)<br>91 (36.3)<br>104 (41.4)            | 8 (7)<br>34 (29.6)<br>61 (53)                   | 28 (20.6)<br>57 (41.9)<br>43 (31.6)            | <0.001  |
| Extreme                                                       | 20 (8)                                          | 12 (10.4)                                       | 8 (5.9)                                        |         |




# Explant SAVR vs. Redo TAVI - Etiopathogenesis

#### **Mechanism of TAVR Failure**

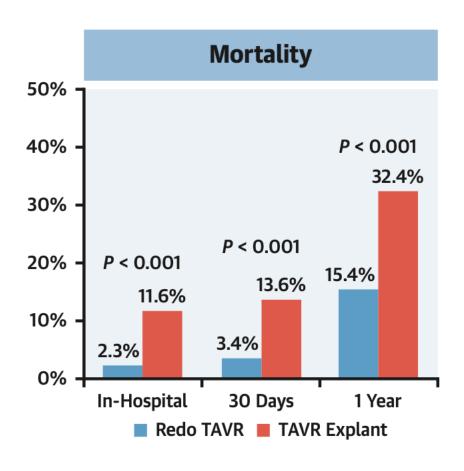
|                   | Redo<br>TAVR | TAVR<br>Explant | P Value |
|-------------------|--------------|-----------------|---------|
| SVD               | 63.7%        | 51.9%           | 0.023   |
| PVL               | 32.8%        | 28.7%           | 0.44    |
| PPM               | 0.5%         | 17.1%           | <0.001  |
| THV<br>Thrombosis | 3.9%         | 1.7%            | 0.23    |
| THV Migration     | 0.5%         | 3.3%            | 0.055   |

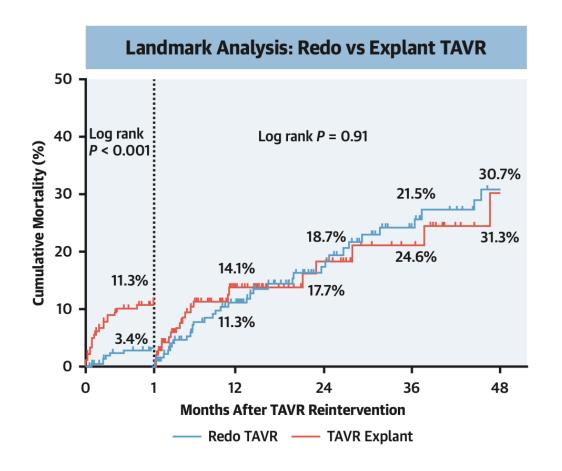





|                 | Redo TAVR        | TAVR Explant    | P Value |
|-----------------|------------------|-----------------|---------|
| Median Interval | 45.7             | 17.6            | <0.001  |
| (months)        | (IQR: 10.6-75.6) | (IQR: 5.0-40.7) |         |




# Explant SAVR vs. Redo TAVI – Explant Surgery



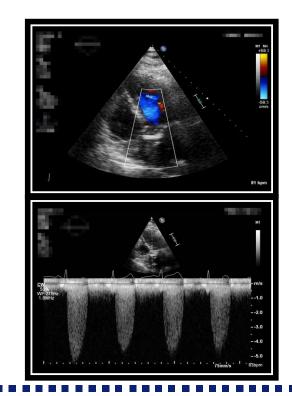

| Cardiopulmonary bypass time, min                                                                                                                                | 146 (106-202)                                                                       |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------|
| Aortic cross-clamp time, min                                                                                                                                    | 104 (73-149)                                                                        |
| Aortic valve replacement<br>Mechanical<br>Tissue                                                                                                                | 162 (89.5)<br>23 (14.2)<br>139 (85.8)                                               |
| Root replacement<br>Mechanical<br>Tissue                                                                                                                        | 19 (10.5)<br>2 (10.5)<br>17 (89.5)                                                  |
| Concomitant procedure(s) <sup>a</sup> Ascending aortic replacement CABG Mitral valve surgery Tricuspid valve surgery Mitral/tricuspid valve surgery Root repair | 101 (55.8)<br>11 (6.1)<br>32 (17.7)<br>37 (20.4)<br>5 (2.8)<br>42 (23.2)<br>3 (1.7) |
| Root enlargement                                                                                                                                                | 30 (16.6)                                                                           |
| Ascending aortic graft size                                                                                                                                     | 28 (26-30)                                                                          |

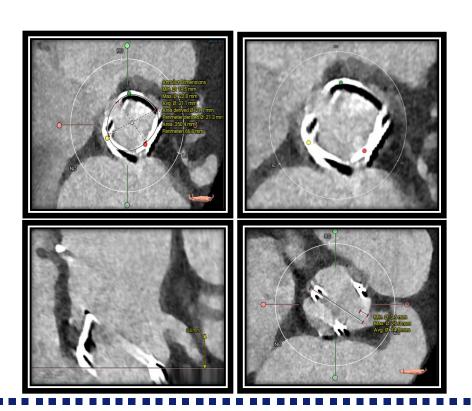


### Explant SAVR vs. Redo TAVI – Outcome









**Advanced MSCT Planning & Simulation** 

Erasmus MC zafus

## Example – Advanced Planning in failing surgical valve

- 73-years old female
  - Relevant Cardiac History: Surgical AVR 2014 (Perimount Bioprosthesis 23mm)
  - <u>History presenting complaint</u>: NYHA 2, CCS 2 + syncope
  - Pre-procedural planning

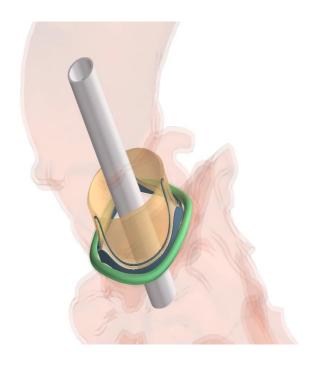


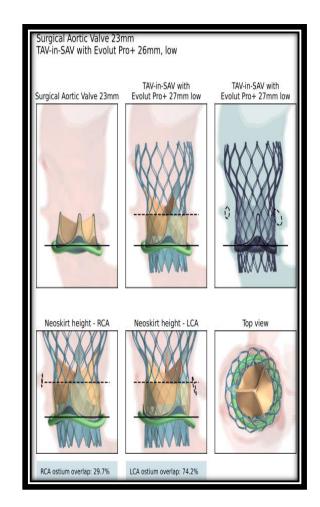


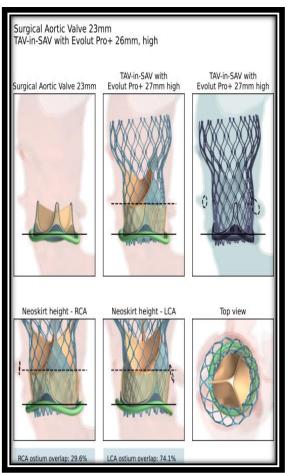


### MATERIALISE CT DERIVED ANATOMY APPRECIATION

#### **Perimount Valve overview**

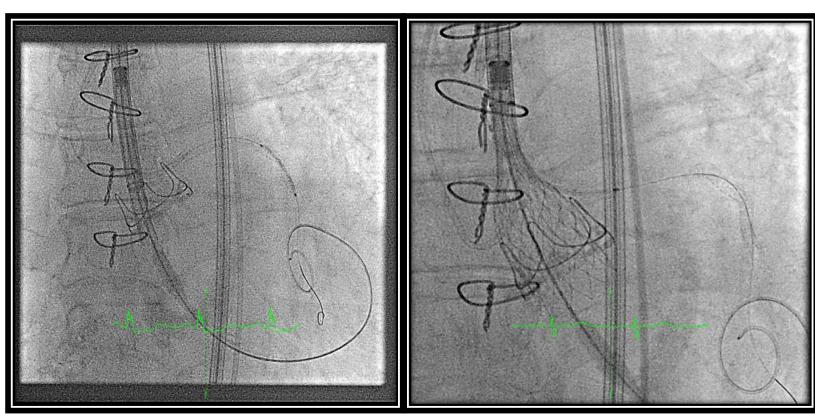




#### **Evolut in Perimount**






### FEOPS CT DERIVED SIMULATION EVOLUT IMPLANTATION

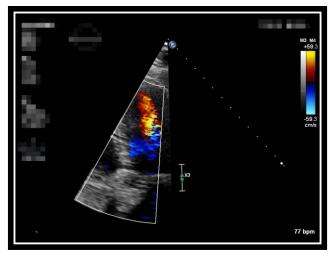


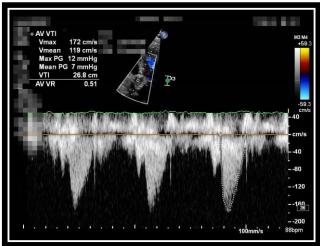


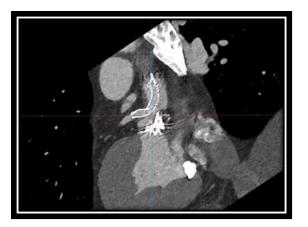


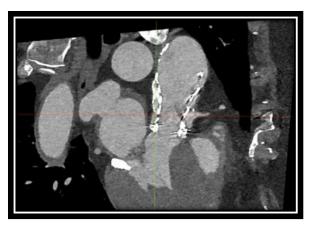


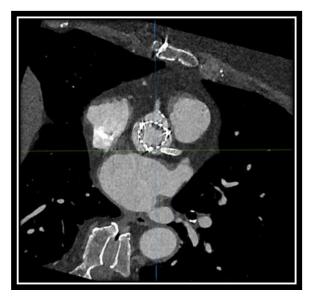

### PROCEDURE - EVOLUT TAVI + CHIMNEY





AR index 33.3, PG 3mmHg, MG 5mmHg





### **FINAL RESULT**













### **Takeaways**

- No comprehensive data on valve durability for TAVI vs. SAVR ⇒ requires 10-year FU
- > **Durability** cannot be an argument in favor of SAVR
  - **✓ EVOLUT** bioprosthetic valve performance = superior to SAVR @ 5 years
- Design matters not all SAVR & TAVI platforms are created equal
- ▶ Lifetime management decisions ≠evidence based
  - ✓ TAVI or SAVR first?
  - √ TAV-in-TAV ⇔ TAV-in-SAV ⇔ SAV post TAV
  - ✓ *TAV*-in-TAV-in-<u>TAV</u> ⇔ *SAV* post TAV-in-<u>TAV</u>
- √ Value of advanced imaging planning

