"Make It Simple": TAVR Antithrombotics

Evidence-based Antiplatelet and Antithrombotic

Therapy for TAVR

Duk-Woo Park, MD

Asan Medical Center, Ulsan University College of Medicine, Seoul, Korea

Disclosure

 Institutional grant/research funding to CardioVascular Research Foundation (CVRF, Korea) and/or Asan Medical Center from Abbott, Boston Scientific, Medtronics, Daiichi-Sankyo, Edwards Lifescience, HK InnoN, Daewoong Pharm, and ChongKunDang Pharm.

Dilemma between leaflet thrombosis and potent antithrombotics after TAVR

DAPT

Warfarin

Rivaroxaban

Apixaban

Lancet 2017;389:2383-92

Subclinical leaflet thrombosis

- Observed in all types of bio-prosthetic aortic valves
- Not associated with symptoms or high transvalvular gradient
- (N)OAC may prevent and resolve reduced leaflet thrombosis
- Uncertain association with increased risk of stroke/TIA and valve durability

Valve Thrombus presents as a spectrum..

Thrombus on bioprosthetic valves can present as a spectrum

- 1. HALT with relatively normal leaflet motion
- 2. HALT with reduced leaflet motion, but normal gradients
- 3. Clinical valve thrombosis with elevated gradients

HALT –ve, normal HALT +ve, normal leaflet motion leaflet motion HALT +ve, reducedHALT +ve, reducedleaflet motion,leaflet motion,normal AV gradientselevated AV gradients

Dives 116 cms Marco 12 cms M

DYNAMIC PATTERN OF LEAFLET THROMBOSIS

84 patients from the SAVORY registry (61 TAVI and 23 SAVR), in whom first and second CT scans were performed at 140 ± 152 days and 298 ± 141 days after value implantation, respectively

Hypo-attenuating leaflet thickening was noted in 32 patients (38.1%), with HAM in 17 (20.2%)

"Can't See the Forest For the Trees" → Leaflet Thrombosis Is Imaging Phenomenon. We Should Consider Patients Itself Rather Than Imaging Concern.

AP VALVES & FORE STRUCTURAL HEART

Sondergaard L et al. European Heart Journal (2017) 38, 2201–2207

Morefrequor

THROMBOTIC AND BLEEDING RISK IN TAVI PATIENTS

Thrombotic Risk

Stroke

Prosthetic Valve Thrombosis

Myocardial Infarction New-onset Atrial fibrillation

Patient

Heyde syndrome

Bleeding Risk

therapy

✓ Anemia

✓ diathesis

✓ Antithrombotic

Bleeding history

✓ Age

 \checkmark

Angiodysplasia

Trials	Target Population	Estimated Enrollment	Antithrombotic Regiment Evaluated	Primary End Points	Timeline	Anticipated Completion Date
POPULAR- TAVI ¹⁰⁶ ; NCT02247128	All-comers undergoing TAVR.; cohort A: no need for long-term OAC; cohort B: need for long-term OAC	1000	Cohort A: SAPT vs 3-mo DAPT; cohort B: VKA vs VKA+clopidogrel (3-mo duration)	Freedom from all BARC-defined bleeding complication at 1 y after TAVR	12 mo	Early 2020
GALILEO ¹⁰⁷ ; NCT02556203	Successful TAVR without indication for long-term OAC	1644	Rivaroxaban 10 mg (qd)+3-mo ASA (75–100 mg qd) vs ASA (75–100 mg qd)+3-mo Clopidogrel (75 mg qd)	Death, any stroke, MI, symptomatic valve thrombosis, DVT/PE, noncentral nervous system systemic embolism, life- threatening, disabling or major VARC-2 bleeding	Cutoff date was event-driven but expected duration of treatment is 720 d	Ended; results to be presented in 2019
ATLANTIS ¹⁰⁸ ; NCT02664649	Successful TAVR	1509	Apixaban (5 mg bd*) vs standard of care	Efficacy: Death, MI, stroke, systemic emboli, bioprosthesis thrombus, DVT/PE; safety: life-threatening, disabling or major VARC-2 bleeding	12±1 mo	2020
ENVISAGE-TAVI AF ¹⁰⁹ ; NCT02943785	Successful TAVR with AF or NOAF	1400	Edoxaban (60 mg qd)±antiplatelet therapy vs VKA±antiplatelet therapy	Efficacy: Death, MI, stroke, systemic embolism, valve thrombosis, ISTH major VARC-2 bleeding; safety: ISTH major bleeding	Cutoff date will be event-driven with an anticipated median follow-up of 2 y	November 2020
AUREA; NCT01642134	High-risk patient to SAVR with no need for long-term OAC	124	3-mo DAPT vs VKA	New areas of cerebral infarction at MRI	3 mo	April 2019
AVATAR; NCT02735902	Need for long-term OAC	170	VKA monotherapy vs VKA+ASA	Death, MI, stroke, valve thrombosis, ISTH major VARC-2 bleeding	12 mo	April 2020
TICTAVI; NCT02817789	All-comers undergoing TAVR	308	Ticagrelor vs ASA+clopidogrel	VARC-2 safety end point: death, stroke, life-threatening or disabling bleeding, stage 2 or 3 acute kidney injury, major vascular complications, coronary artery obstruction or valve-related dysfunction requiring intervention	30 d	2018
REAC TAVI;	All-comer undergoing	65	3-mo ticagrelor vs 3-mo	Platelet reactivity	3 mo	August 2018

Table 3. Main Ongoing Randomized Trials Evaluating Antithrombotic Regimen After TAVR

CVRF

What Are Optimal Solutions? Potential NOAC Role?

AP VALVES & FOR STRUCTURAL HEAF

THROMBOTIC AND BLEEDING RISKS IN RCTS

If you define primary trial endpoint as the net clinical composite including major bleeding events, you can always achieve positive trial with <u>less potent antithrombotic strategy</u>. \Rightarrow This seems to be attractive for trial investigators \Rightarrow Is it sufficient to guide your decision-making?

CLINICAL TRIALS: DAPT VS. SAPT IN PATIENTS WITHOUT OAC

MACE: Composite of CV death, stroke, MI, (major or life-threatening bleeding)*ARTE

CLINICAL TRIALS: OAC IN PATIENTS WITHOUT OAC INDICATION

MACE: Composite of death, stroke, systemic embolism, (MI, symptomatic valve thrombosis, DVT/PE)*GALILEO

CLINICAL TRIALS: OAC IN PATIENTS WITHOUT OAC INDICATION

Dangas et al. NEJM 2020; Collet et al. ACC.21

Reduced Leaflet Motion

Grade 2

Hypoattenuated Leaflet Thickening

No thickening

<25% of Leaflet

50-75% of Leaflet

GALILEO 4D

ATLANTIS 4D-CT (Stratum 2)

25-50% of Leaflet

"Can't See the Forest For the Trees" → Leaflet Thrombosis Is Imaging Phenomenon. We Should Consider Patients Itself Rather Than Imaging Concern.

RLM HALT Apixaban Antiplatelet

CLINICAL TRIALS: OAC vs. OAC + SAPT IN PATIENTS WITH OAC

MACE: Composite of CV death, ischemic stroke, or MI

CLINICAL TRIALS: VKA VS. NOAC IN PATIENTS WITH OAC INDICATION

MACE: Composite of death, stroke, systemic embolism, (MI, symptomatic valve thrombosis, major bleeding)*ENVISAGE-TAVI

Why Several RCTs for TAVR Patients Failed? Ischemic & Bleeding Leverage Is More Complex in Elderly TAVR Patients

AP VALVES & EDEE STRUCTURAL HEAR Applicable to Younger ACS or PCI population Clustering effect in Fragile, Elderly TAVR Patients

Key Questions regarding HALT/RLM

Does HALT/RLM lead to clinical events?

Does HALT/RLM cause structural valve degeneration?

Subclinical Leaflet Thrombosis (SLT) after TAVR¹⁻⁴ What Is Known? What Is Unknown?

SLT, subclinical leaflet thrombosis; OAC, oral anticoagulation; TAVR, transcatheter aortic valve replacement; TIA, transient ischemic attack.

¹Makkar RR, et al. *NEJM*. 2015;373:2015-2024. ²Chakravarty T, et al. *Lancet* 2017;389:2383-2392. ³Makkar RR, et al. *JACC* 2020;75:3003-3015. ⁴Bogyi M, et al. *JACC: Cardiovascular Interventions* 2021;14:2643-2656.

ORIGINAL RESEARCH ARTICLE

Edoxaban Versus Dual Antiplatelet Therapy for Leaflet Thrombosis and Cerebral Thromboembolism After TAVR: The ADAPT-TAVR Randomized Clinical Trial

Duk-Woo Park[®], MD; Jung-Min Ahn[®], MD; Do-Yoon Kang, MD; Kyung Won Kim, MD; Hyun Jung Koo, MD; Dong Hyun Yang[®], MD; Seung Chai Jung, MD; Byungjun Kim, MD; Yiu Tung Anthony Wong[®], MD: Cheung Chi Simon Lam, MD; Wei-Hsian Yin, MD; Jeng Wei, MD; Yung-Tsai Lee, MD; Hsien-Li Kao[®], MD; Mao-Shin Lin, MD; Tsung-Yu Ko, MD; Won-Jang Kim, MD; Se Hun Kang, MD; Sung-Cheol Yun, PhD; Seung-Ah Lee[®], MD; Euihong Ko, MD; Hanbit Park, MD; Dae-Hee Kim[®], MD; Joon-Won Kang, MD; Jae-Hong Lee[®], MD; Seung-Jung Park[®], MD; for the ADAPT-TAVR Investigators

Circulation. 2022;146:466-479.

Study Design

ADAPT-TAVR Trial:

<u>Anticoagulant versus</u> <u>D</u>ual <u>Antiplatelet</u> Therapy for <u>Preventing</u> Leaflet <u>Thrombosis</u> After <u>Transcatheter</u> <u>Aortic</u> <u>V</u>alve <u>Replacement</u>

220 patients without OAC indication after successful TAVR

*30 mg once daily if moderate or severe renal impairment (creatinine clearance 15 – 50 mL/min), low body weight ≤60kg, or concomitant use of P-glycoprotein inhibitors (cyclosporin, dronedarone, erythromycin, ketoconazole).

Park H et al. BMJ Open. 2021;11:e042587

Completeness of Imaging & Neurocognitive Assessment

Measurement	Cardiac CT	Brain MRI	NIHSS	mRS	МоСА
Post-TAVR		★	★	★	★
(~ before Discharge)		(98.3%)	(98.3%)	(98.3%)	(98.3%)
6-Mo follow-up	★	★	★	★	★
	(95.9%)	(96.4%)	(95.5%)	(95.5%)	(95.5%)
Completeness of serial evaluations*		95.9%	93.7%	93.7%	93.7%

* Completeness of imaging or neurological assessments at 6 months was estimated among eligible patients who were alive at 6 months and did not withdraw during follow-up.

NIHSS, National Institutes of Health Stroke Scale; mRS, modified Rankin Scale; MoCA, Montreal Cognitive Assessment

"No Association" of Severity of HALT with Extent of New Lesions on Brain MRI

		Number of New Lesions	Number of New Lesions	Number of New Lesions
		on DWI-MRI	on FLAIR-MRI	on GRE-MRI
	Ν	209	209	209
Number of HALI	Spearman Rho	0.09	-0.04	-0.02
Per-Patient	P-Value	0.19	0.60	0.81

AP VALVES & EDEE STRUCTURAL HEAR HALT, hypoattenuated leaflet thickening; DWI, diffusion weighted image; FLAIR, fluid attenuated inversion recovery; GRE, gradient echo; MRI, magnetic resonance imaging

"No Association" of Severity of HALT with Decline of Neurological Assessments

		Serial Change of	Serial Change of	Serial Change of
		NIHSS Score	mRS Score	MOCA Score
	Ν	204	204	204
Number of HALT	Spearman Rho	0.01	0.02	0.03
Per-Patient	P-Value	0.94	0.77	0.68

AP VALVES & ECER STRUCTURAL HEART

HALT, hypoattenuated leaflet thickening; NIHSS, National Institutes of Health Stroke Scale; mRS, modified Rankin Scale; MoCA, Montreal Cognitive Assessment

GUIDELINE RECOMMENDATIONS FOR MANAGEMENT OF ANTITHROMBOTIC THERAPY AFTER TAVI

	Antithrombotic therapy after TAVI	Class	Level
	OAC is recommended lifelong for TAVI patients who have other indications for OAC.	I	В
J	Lifelong SAPT is recommended after TAVI in patients with no baseline indication for OAC.	I.	Α
(Routine use of OAC is not recommended after TAVI in patients with no baseline indication for OAC.	ш	В

Given no association of HALT and cerebral thromboembolic risk,

Our ADAP-TAVR trial results strongly support "current VHD guidelines in TAVR patients without OAC indication" "Simpler is Best"

American Heart Association	anticoagulants.			
	For patients with a bioprosthetic TAVI who are at low risk of bleeding, dual antiplatelet therapy with aspirin 75 to 100 mg and clopidogrel 75 mg may be reasonable for 3 to 6 months after valve implantation.	llb	В	
AMERICAN COLLEGE of CARDIOLOGY	For patients with a bioprosthetic TAVI who are at low risk of bleeding, anticoagulation with a VKA to achieve an INR of 2.5 may be reasonable for at least 3 months after valve implantation	llb	В	
	For patients with a bioprosthetic TAVI, treatment with low-dose rivaroxaban (10mg daily) plus aspirin (75-100 mg) is contraindicated in the absence of other indications for oral anticoagulants.	ш	В	

2020 ACC/AHA Guideline for the Management of Patients With Valvular Heart Disease

Summary

Antithrombotics after TAVR: "Make It Simple"

- Current available RCTs showed "no benefit" of DOAC with "considerable hazards" in patients without OAC indications and "neutral effect" in patients with OAC indications.
- Subclinical leaflet thrombosis has not been proven to directly affect thromboembolic events after TAVR; this evidence does not support imaging quided aptithrombotic strategies in cases without

One Singe Message: Antithrombotic therapy after TAVR "Treat the patient, not the valve" approach!