

Intravascular Imaging-Guided Versus Angiography-Guided Complex PCI

<The RENOVATE-COMPLEX-PCI>

Joo-Yong Hahn, MD/PhD

Heart Vascular Stroke Institute

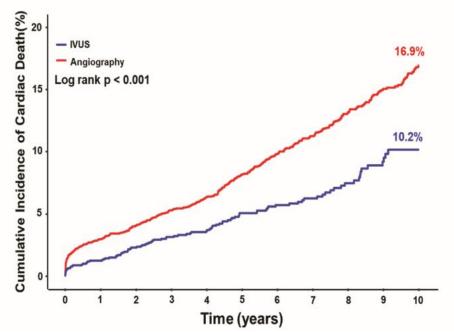
Samsung Medical Center, Seoul, Korea

On behalf of RENOVATE-COMPLEX-PCI Investigators

Disclosure

Grant support

- National Evidence-based Healthcare Collaborating Agency, Ministry of Health & Welfare, Republic of Korea
- Abbott Vascular, Biosensors, Biotronik, Boston Scientific, Daiichi Sankyo, Donga-ST, Hanmi Pharmaceutical, and Medtronic


Consulting Fees/Honoraria

 Abbott Vascular, Amgen, Astra Zeneca, Biosensors, Biotronik, Boston Scientific, Daiichi Sankyo, MSD Korea, Novartis, Pfizer, and Sanofi-Aventis

Background

- Previous trials (CTO-IVUS, AVIO, HOME-DES-IVUS, IVUS-XPL, and ULTIMATE) have shown lower rates of major adverse clinical events after intravascular ultrasound (IVUS)-guided percutaneous coronary intervention (PCI) than after angiography-guided PCI but have not been considered definitive owing to limited sample size, short follow-up duration, or the inclusion of highly selected coronary-lesion subsets.
- Our group has already reported the long-term benefit of the use of IVUS in patients undergoing complex PCI in an observational study.¹

Guidelines for Coronary Artery Revascularization

2021 ACC/AHA/SCAI

2018 ESC/EACTS

COR	LOE	Recommendations
2 a	B-R	 In patients undergoing coronary stent implan- tation, IVUS can be useful for procedural guidance, particularly in cases of left main or complex coronary artery stenting, to reduce ischemic events.¹⁻¹⁰
2 a	B-R	 In patients undergoing coronary stent implan- tation, OCT is a reasonable alternative to IVUS for procedural guidance, except in ostial left main disease.¹¹⁻¹³
2 a	C-LD	3. In patients with stent failure, IVUS or OCT is reasonable to determine the mechanism of stent failure. ¹⁴⁻¹⁷

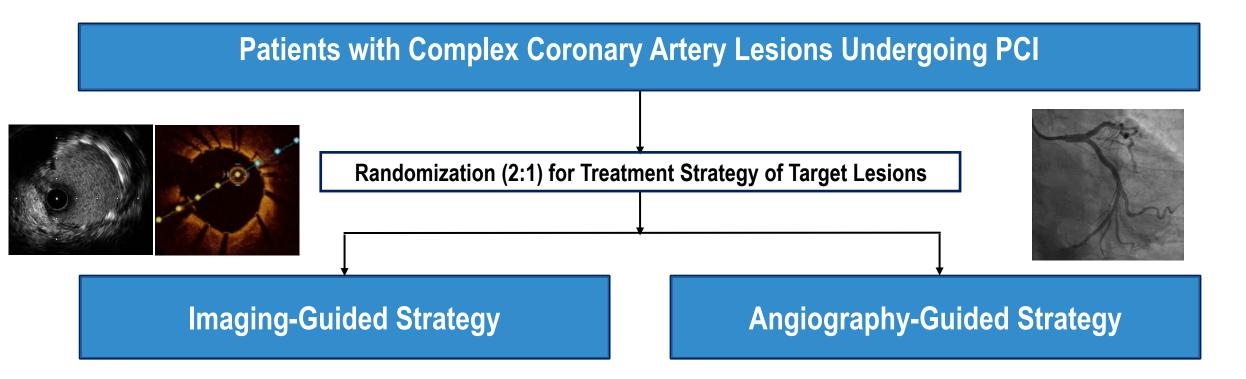
Recommendations	Class ^a	Level ^b
IVUS or OCT should be considered in selected patients to optimize stent implantation. 603,612,651–653	lla	В
IVUS should be considered to optimize treatment of unprotected left main lesions. ³⁵	lla	В

A randomized trial with adequate sample size is needed to confirm the benefit of intravascular imaging-guided PCI in patients with complex coronary artery lesions.

RENOVATE-COMPLEX-PCI: Study Objective

 To investigate whether intravascular imaging-guided PCI using IVUS or optical coherence tomography (OCT) would improve clinical outcomes compared with angiography-guided PCI in patients with complex coronary artery lesions.

Working Hypothesis


Intravascular imaging-guided PCI would reduce target vessel failure (a composite of cardiac death, target vessel-related myocardial infarction, and target vessel revascularization), compared with angiography-guided PCI in treatment of patients with complex coronary artery lesions.

Study Design

RENOVATE-COMPLEX-PCI (NCT03381872)

An investigator-initiated, prospective, multicenter, randomized, open-label trial at 20 sites in Korea

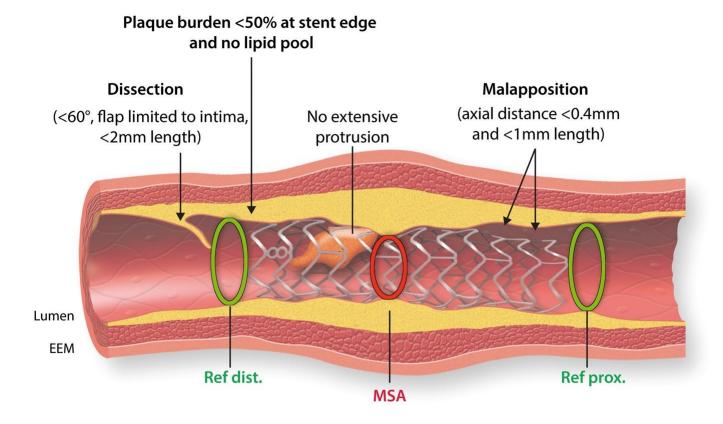
For patients who had been assigned to the intravascular imaging group, the choice of IVUS or OCT was made at the operators' discretion.

Samsung Medical Center

Inclusion and Exclusion Criteria

ria

INCLUSION


- 1. Patients (≥ 19 years) with coronary artery disease requiring PCI
- 2. Patients with a **complex coronary artery lesion** defined as:
 - True bifurcation lesion (Medina 1,1,1/1,0,1/0,1,1) with side branch ≥2.5mm
 - Chronic total occlusion (≥3 months) as target lesion
 - Unprotected LM disease PCI (LM ostium, body, distal LM bifurcation including non-true bifurcation)
 - Long coronary lesions (implanted stent ≥38 mm in length)
 - Multi-vessel PCI (≥2 vessels treated at one PCI session)
 - Multiple stents needed (≥3 more stent per patient)
 - In-stent restenosis lesion as target lesion
 - Severely calcified lesion (encircling calcium in angiography)
 - Ostial coronary lesion (LAD, LCX, RCA)

KEY EXCLUSION

- 1. Target lesions not amenable to PCI by operators' decision
- 2. Cardiogenic shock (Killip class IV) at presentation
- 3. Intolerance to Aspirin, Clopidogrel, Prasugrel, Ticagrelor, Heparin, or Everolimus
- 4. Known true anaphylaxis to contrast medium (not allergic reaction but anaphylactic shock)
- 5. Pregnancy or breast feeding
- 6. Non-cardiac co-morbid conditions are present with life expectancy <1 year or that may result in protocol non-compliance (per site investigator's medical judgment)
- 7. Unwillingness or inability to comply with the procedures described in this protocol.

Criteria of PCI Optimization by Intravascular Imaging

An expert consensus document of the European Association of PCI¹

MSA>5.5mm² (IVUS) and >4.5mm² OCT MSA/average reference lumen > 80%

- Standardized protocols for selection of reference size, stent size, and length
- In left main lesions, MSA >7 mm² for a distal left main coronary artery stenosis and >8 mm² for a proximal left main coronary artery stenosis
- Intravascular imaging could be used at any time during the PCI procedure but was mandated after stent implantation to determine whether the stented segment was optimized.
- If stent optimization did not occur, additional dilation of the stent or additional stent implantation was recommended, and repeat evaluation on intravascular imaging was mandated.

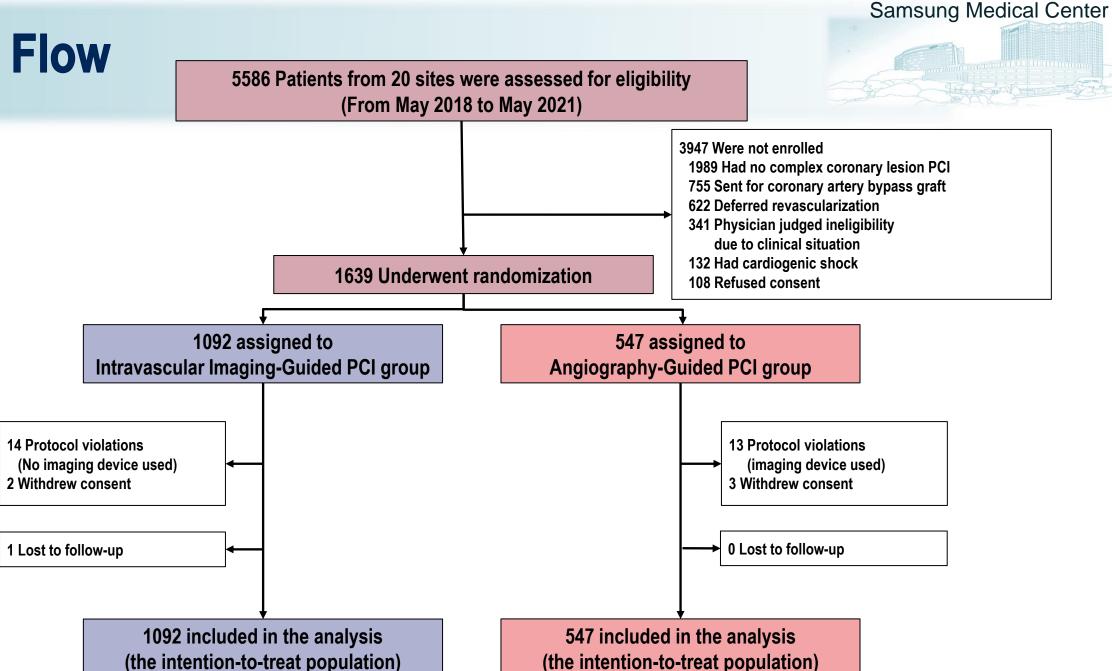
Study End Points

Primary End Point

- Target vessel failure
 - A composite of cardiac death, target vessel-related MI, or clinically-driven target vessel revascularization.

Secondary End Points

- Target vessel failure without procedure-related MI
- Cardiac death or target vessel-related MI
- Target vessel-related MI with or without procedure-related MI
- Non-target vessel-related MI
- Any MI with or without procedure-related MI
- Target lesion revascularization

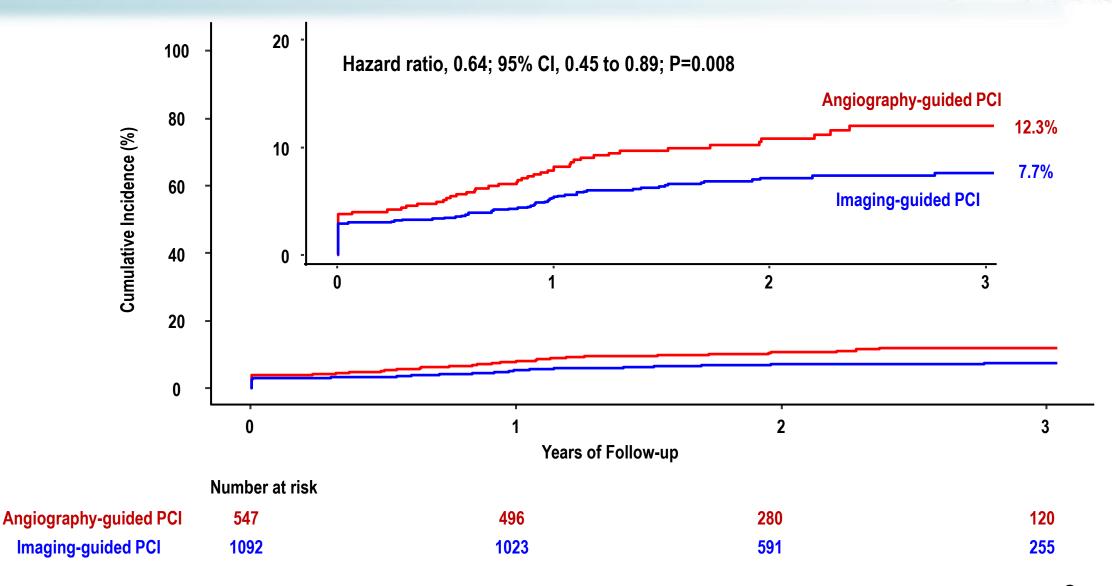

- Target vessel revascularization
- Any revascularization (clinically-driven)
- Definite stent thrombosis
- Total amount of contrast
- Incidence of contrast-induced nephropathy
- Total procedural time
- Total medical cost (not reported in this publication)

Definition of Clinical Events

- Spontaneous MI according to 3rd Universal Definition¹
- Other clinical events according to ARC-2 criteria³

Procedure-related MI according to SCAI Definition²

Baseline Clinical Characteristics


Characteristics	Total (N=1639)	Imaging-guided PCI (N=1092)	Angio-guided PCI (N=547)
Age — yr	65.6±10.2	65.3±10.3	66.0±10.0
Male — n (%)	1300 (79.3)	869 (79.6)	431 (78.8)
Initial presentation — no. (%)			
Stable ischemic heart disease	807 (49.2)	532 (48.7)	275 (50.3)
Acute coronary syndrome	832 (50.8)	560 (51.3)	272 (49.7)
Unstable angina	534 (32.6)	361 (33.1)	173 (31.6)
Acute myocardial infarction	298 (18.2)	199 (18.2)	99 (18.1)
Non-ST-segment elevation myocardial infarction	258 (15.7)	171 (15.7)	87 (15.9)
ST-segment elevation myocardial infarction	40 (2.4)	28 (2.6)	12 (2.2)
Medical history — no. (%)			
Hypertension	1005 (61.3)	682 (62.5)	323 (59.0)
Diabetes mellitus	617 (37.6)	394 (36.1)	223 (40.8)
Dyslipidemia	840 (51.3)	560 (51.3)	280 (51.2)
Current smoking	307 (18.7)	212 (19.4)	95 (17.4)
Chronic renal insufficiency	296 (18.1)	203 (18.6)	93 (17.0)
Previous PCI	395 (24.1)	268 (24.5)	127 (23.2)
Previous myocardial infarction	117 (7.1)	75 (6.9)	42 (7.7)
LV ejection fraction —(%)	58.7±11.6	58.4±11.9	59.3±11.0

Baseline Angiographic and Procedural Characteristics

Characteristics	Total (N=1639)	Imaging-guided PCI (N=1092)	Angio-guided PCI (N=547)
Complex coronary lesions — no. (%)			
True bifurcation lesion with side branch ≥2.5mm	359 (21.9)	233 (21.3)	126 (23.0)
Chronic total occlusion (≥3 months)	319 (19.5)	220 (20.1)	99 (18.1)
Unprotected left main coronary artery disease	192 (11.7)	138 (12.6)	54 (9.9)
Long coronary lesion (implanted stent ≥38 mm in length)	898 (54.8)	617 (56.5)	281 (51.4)
Multivessel PCI (≥2 vessels treated at one PCI session)	622 (37.9)	409 (37.5)	213 (38.9)
Multiple stents (≥3 more stent per patient)	305 (18.6)	208 (19.0)	97 (17.7)
In-stent restenosis	236 (14.4)	158 (14.5)	78 (14.3)
Severely calcified (encircling calcium in angiography)	231 (14.1)	157 (14.4)	74 (13.5)
Ostial coronary lesion (LAD, LCX, RCA)	251 (15.3)	182 (16.7)	69 (12.6)
Number of vessels with disease — no. (%)			
1-vessel disease	526 (32.1)	342 (31.3)	184 (33.6)
2-vessel disease	621 (37.9)	420 (38.5)	201 (36.7)
3-vessel disease	492 (30.0)	330 (30.2)	162 (29.6)
Procedural characteristics			
Radial artery access — no. (%)	1253 (76.4%)	827 (75.7%)	426 (77.9%)
Intravascular imaging devices used — no./total no. (%) †	1091/1639 (66.6)	1078/1092 (98.7)	13/547 (2.4)
Intravascular ultrasound	813/1091 (74.5)	800/1078 (74.2)	13/13 (100.0)
Optical coherence tomography	278/1091 (25.5)	278/1078 (25.8)	0/13 (0.0)
Volume of contrast media used — ml	207.3±116.5	214.2±118.5	193.7±111.3
Procedural time — min	65.0 (47.0-89.0)	70.0 (51.0-95.0)	53.5 (40.0-75.0)
Procedural success — no. (%)	1613 (98.4)	1073 (98.3)	540 (98.7)
			Cômplex PCI 2023

Samsung Medical Center

Primary End Point: TVF

Primary and Secondary End Points

E 15 ' (Total	Imaging-guided PCI	Angiography-guided PCI	Hazard Ratio	D .V.:
End Point	(N=1639)	(N=1092)	(N=547)	(95% CI)*	P Value
Primary end point — no. (%)					
Target vessel failure	136 (9.2)	76 (7.7)	60 (12.3)	0.64 (0.45-0.89)	0.008
Secondary end points — no. (%)					
Target vessel failure without procedure-related MI	88 (6.3)	48 (5.1)	40 (8.7)	0.59 (0.39-0.90)	
Cardiac death or target-vessel related MI	96 (6.4)	53 (5.3)	43 (8.5)	0.63 (0.42-0.93)	
All-cause death	70 (5.6)	42 (5.3)	28 (6.4)	0.71 (0.44–1.15)	
Cardiac death	33 (2.4)	16 (1.7)	17 (3.8)	0.47 (0.24-0.93)	
Myocardial infarction	75 (5.0)	43 (4.4)	32 (6.2)	0.78 (0.48-1.25)	
Target-vessel related MI	68 (4.3)	38 (3.7)	30 (5.6)	0.74 (0.45-1.22)	
Spontaneous MI	17 (1.2)	8 (0.9)	9 (1.8)	0.66 (0.23-1.90)	
Procedure-related MI	52 (3.2)	30 (2.7)	22 (4.0)	0.77 (0.43-1.35)	
Non-target vessel related MI	8 (0.8)	5 (0.8)	3 (0.8)	1.24 (0.24-6.40)	
Repeat revascularization	87 (6.6)	55 (6.3)	32 (7.1)	0.95 (0.60-1.48)	
Target vessel revascularization	57 (4.1)	32 (3.4)	25 (5.5)	0.69 (0.40-1.18)	
Target lesion revascularization	44 (3.2)	24 (2.6)	20 (4.4)	0.66 (0.36-1.22)	
Definite stent thrombosis	5 (0.3)	1 (0.1)	4 (0.7)	0.25 (0.02-2.75)	
Contrast induced nephropathy†	40 (2.4)	26 (2.4)	14 (2.6)	0.99 (0.51-1.92)	

Conclusion

- Among patients with complex coronary artery lesions, intravascular imaging-guided PCI reduced a composite of cardiac death, target vesselrelated myocardial infarction, or clinically driven target vessel revascularization compared with angiography-guided PCI.
- The RENOVATE-COMPLEX-PCI supports the intravascular imaging-guided PCI in patients with complex coronary lesions.

Thank You Very Much!

norticinating investigators. I would like to than'

RENOVATE-COMP

Joo Myung Lee, MD, MPH, PhD

The NEW ENGLAND JOURNAL of MEDICINE

ORIGINAL ARTICLE

Intravascular Imaging–Guided or Angiography-Guided Complex PCI

J.Y. Cho, C.J. Kim, H.-S. Ahn, C.-W. Nam, H.-J. Yoon, Y.H. Park, W.S. Lee, J.-O. Jeong, P.S. Song, J.-H. Doh, S.-H. Jo, C.-H. Yoon, M.G. Kang, J.-S. Koh, K.Y. Lee, Y.-H. Lim, Y.-H. Cho, J.-M. Cho, W.J. Jang, K.-J. Chun, D. Hong, T.K. Park, J.H. Yang, S.-H. Choi, H.-C. Gwon, and J.-Y. Hahn, for the RENOVATE-COMPLEX-PCI Investigators*

Uijeongbu St. Mary's Hospital, Korea

Kook-Jin Chun, MD, PhD

Pusan National University Yangsan Hospital, Korea

J.M. Lee, K.H. Choi, Y.B. Song, J.-Y. Lee, S.-J. Lee, S.Y. Lee, S.M. Kim, K.H. Yun,

Complex PCI 2023

Ki-Hong Choi, MD, PhD David Hong, MD Taek-Kyu Park, MD, PhD Jeong Hoon Yang, MD, PhD Young Bin Song, MD, PhD

Seung-Hyuk Choi, MD, PhD

Hyeon-Cheol Gwon, MD, PhD

Jong-Young Lee, MD, PhD

Seung-Jae Lee, MD, PhD

Sang Yeub Lee, MD, PhD

Sang Min Kim, MD, PhD

Kyeong Ho Yun, MD, PhD

Jae Young Cho, MD, PhD

Chan Joon Kim, MD, PhD

Hyo-Suk Ahn, MD, PhD

Dongsan Hospital, Korea

Dongsan Hospital, Korea

n Hospital, Korea

ty Hospital, Korea

University Hospital, Korea

University Hospital, Korea

Paik hospital, Korea

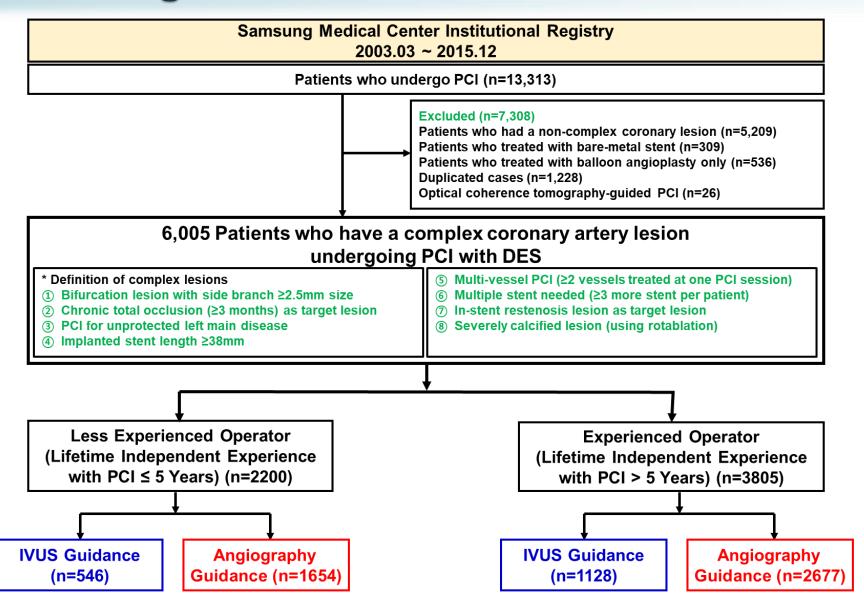
acred Heart Hospital, Korea

ersity Bundang Hospital, Korea

al University Hospital, Korea

al University Hospital, Korea

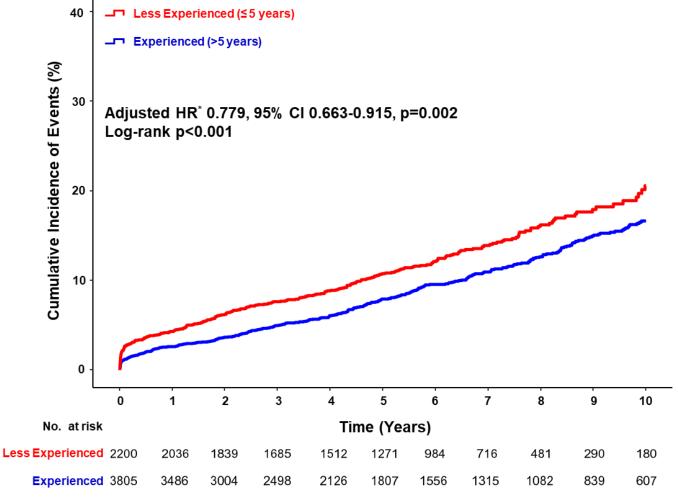
ospital, Korea


Seoul Hospital, Korea

Myongji Hospital, Korea

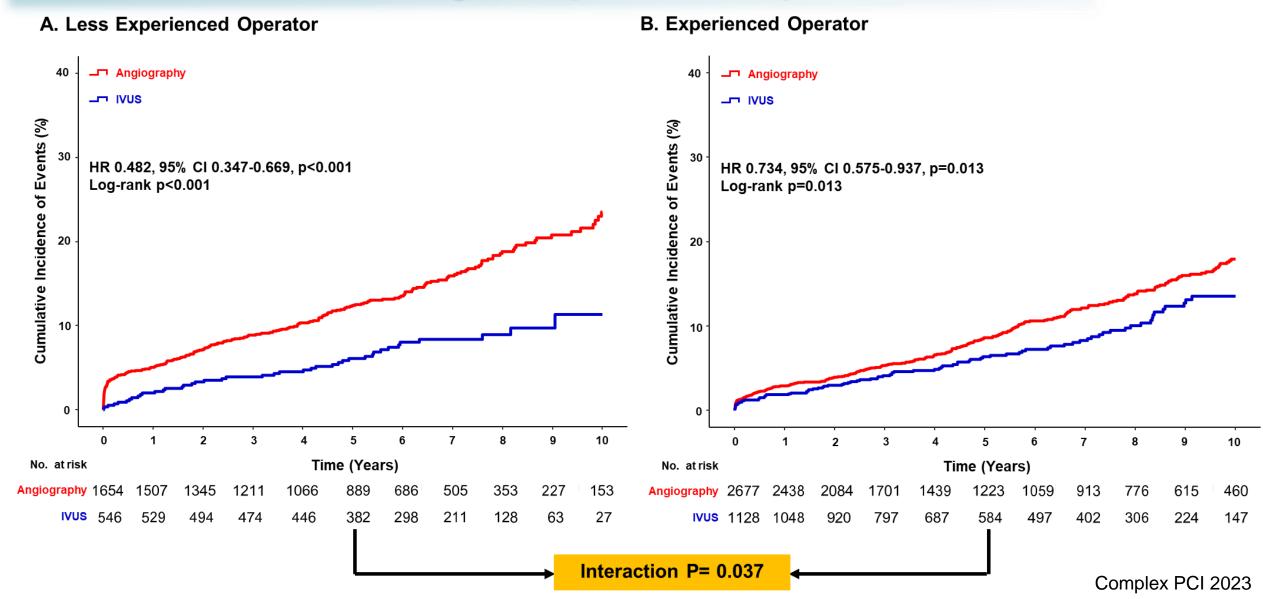
ty Hospital at Gangdong, Korea

.....ersity College of Medicine, Korea

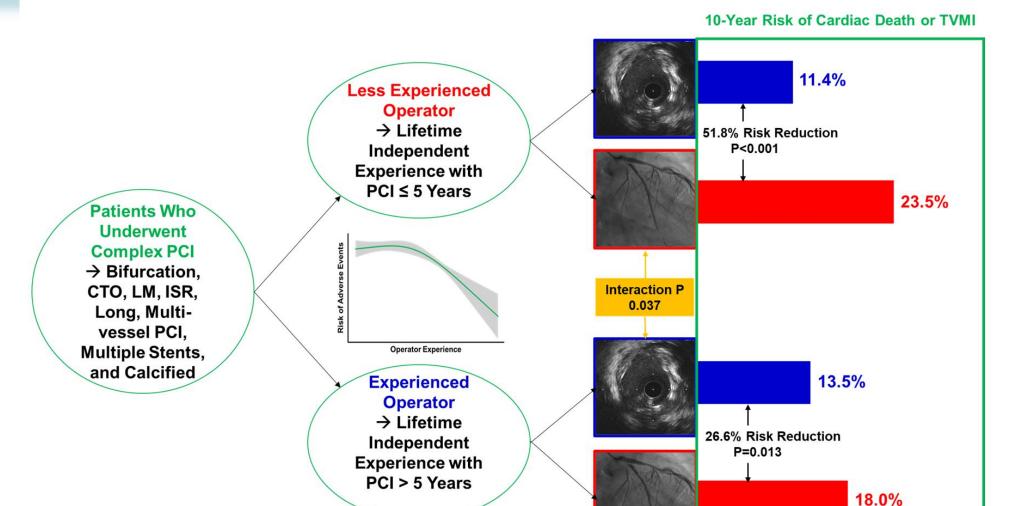

Prognostic Impact of Operator Experience and IVUS Guidance on Long-Term Clinical Outcomes


Ten-Year Risk of Cardiac Death or TVMI According to Operator Experience

A. Categorical Value



B. Continuous Value


Samsung Medical Center

Cardiac Death or TVMI Between IVUS and Angiography Guidance According to Operator Experience

Differential Benefits of IVUS Guidance According to Operator Experience During Complex PCI

감사합니다. Thank you for your attention.

