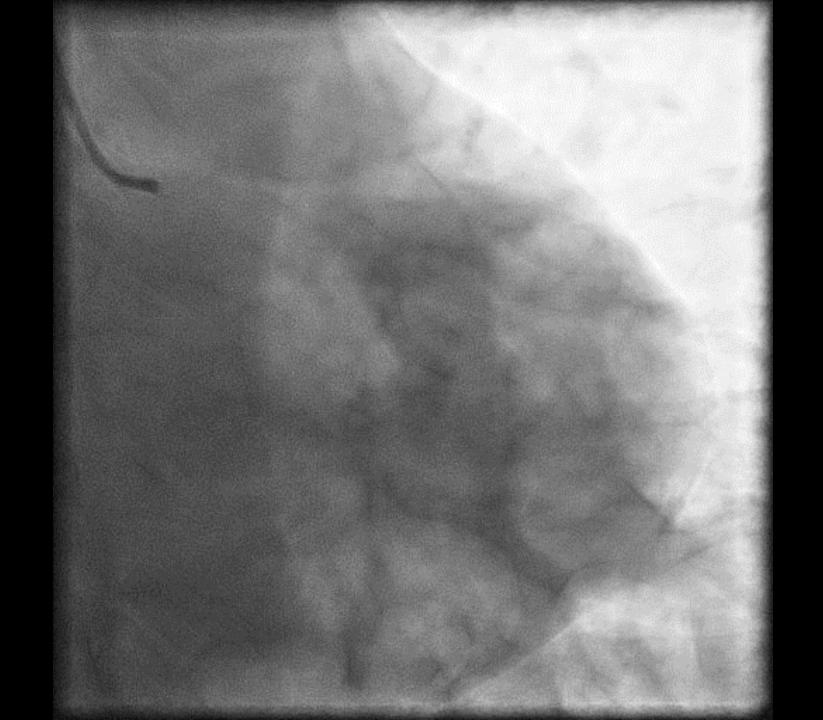


Make-It-Simple! Learning Through Experience 0.0.1 Bifurcation PCI, Is Simple Enough?

Chang-Wook NAM MD/PhD

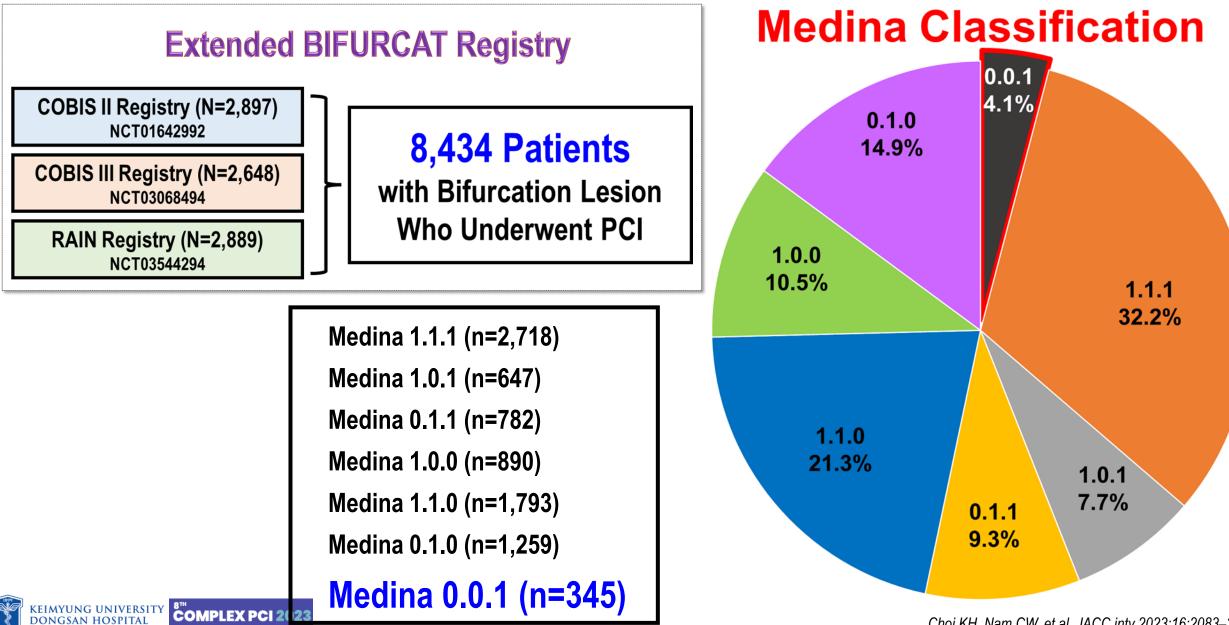
Keimyung University Dongsan Hospital, Daegu, Korea



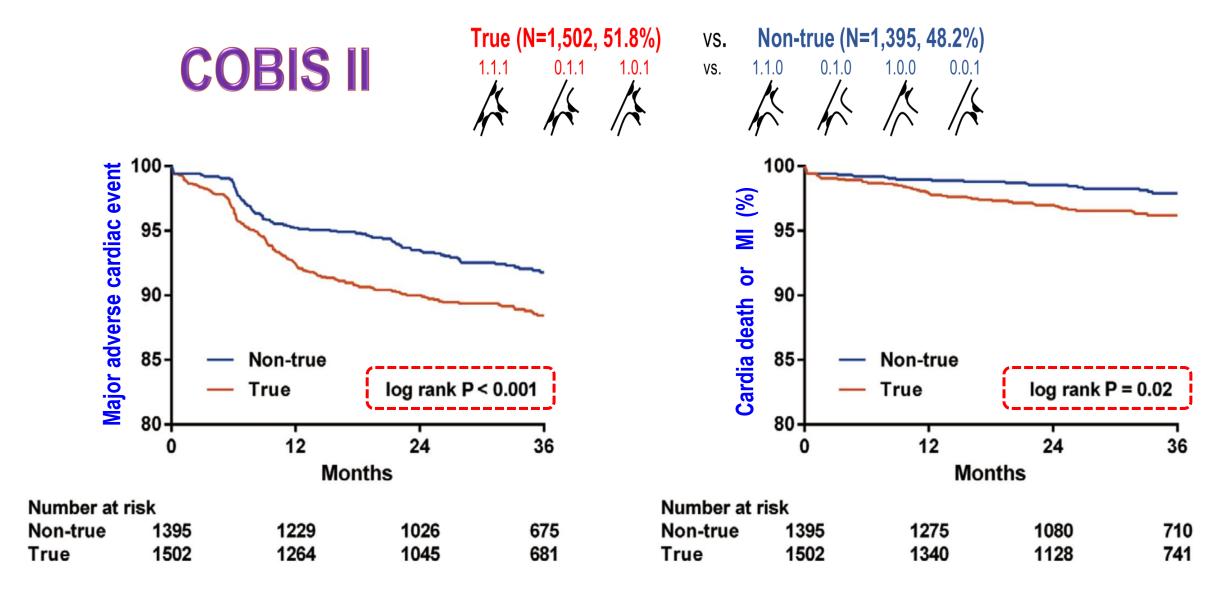
Disclosure

Research grant: Abbott, Genoss, Merck (US), Amgen, ...

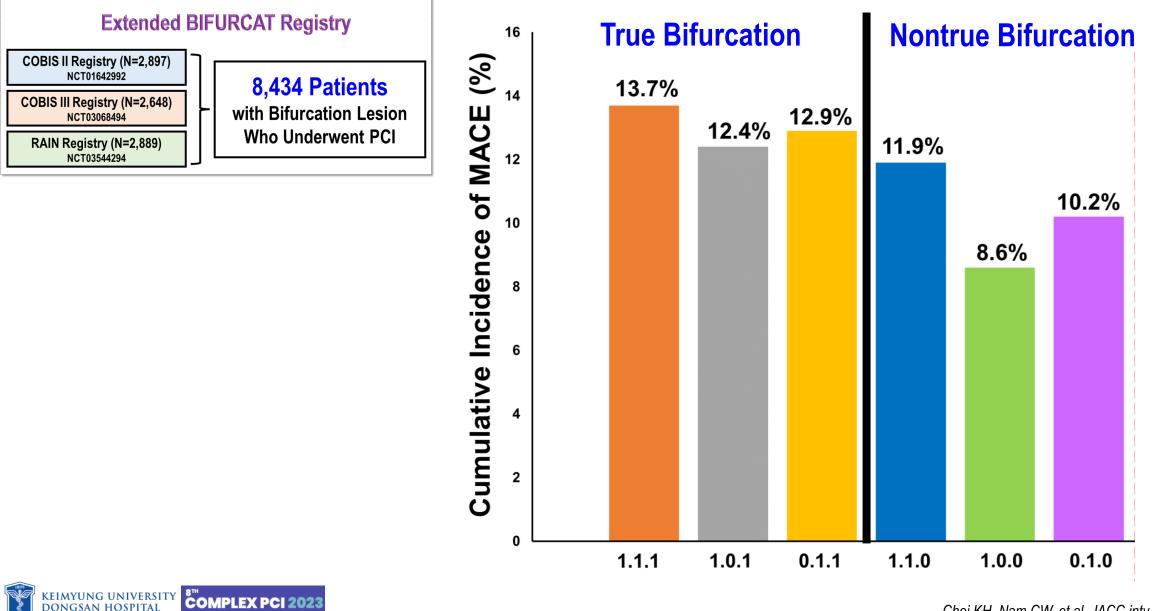
Consultant: Viatris, Sanofi, MSD, Abbott, Phillips, Genoss, Deawoong, Boryung, Yuhan, Daiichisankyo, Astrazeneca,...



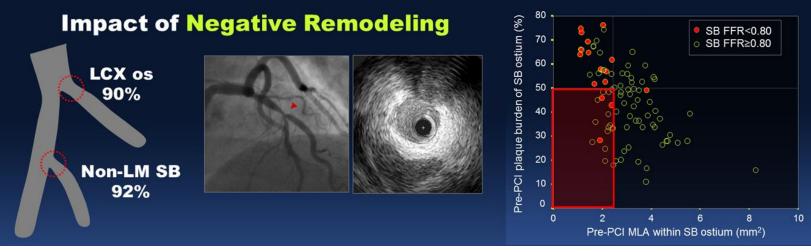
0.0.1 Bifurcation PCI, Is Simple Enough?


- How many 0.0.1 lesions are there?
- 0.0.1 Bifurcation Lesions, **Benign or Malignant**?
- What are **Unique Features** of 0.0.1 Bifurcation Lesions?
- What are **Treatment Option** for 0.0.1 Bifurcation Lesions?
- Stent Strategy for 0.0.1 Bifurcation Lesions, 1 vs. 2-stent Strategy?

1) How many 0.0.1 lesions are there?



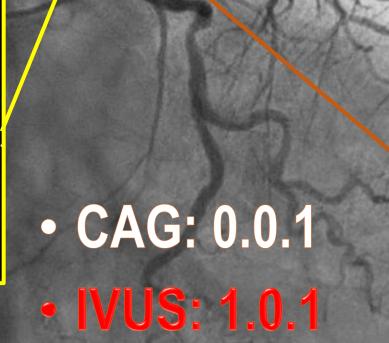
2) 0.0.1 Bifurcation Lesions, Benign or Malignant?



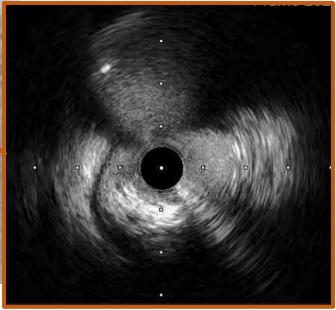
2) 0.0.1 Bifurcation Lesions, Benign or Malignant?

MAKE IT SIMPLEI: TECHNICAL FORUM A TO

3) What are Unique Features of 0.0.1 Bifurcation Lesions?


If MLA is reduced **not by significant plaque**, but by **small vessel or negative remodeling**, 80% show <u>normal FFR</u>. Kang SJ, et al. Catheter Cardiovasc Interv 2012 & 2013

- Negative remodeling \rightarrow Recoil, lesser acute gain
- Risk of injury to the MV when treating the SB

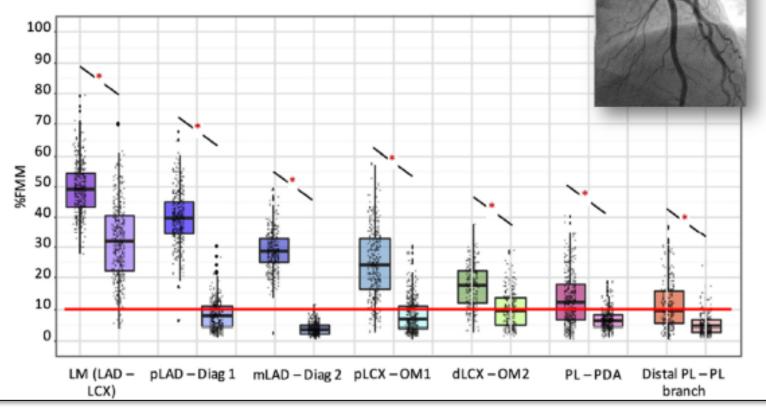

CEIMYUNG UNIVERSITY Dongsan hospital

- Smaller vessel size \rightarrow Smaller stent \rightarrow Risk of stent failure
- Angiographic 001 bifurcation lesion is not always true 001.

4) What are Treatment Option for 0.0.1 Bifurcation Lesions?

- Medical treatment alone
- Balloon angioplasty (+Drug Coated Balloon treatment)
- Stent strategy

4) What are Treatment Option for 0.0.1 Bifurcation Lesions?


Medical treatment alone

Balloon angioplasty (+D

Stent strategy

Myocardial Burden of Side Branch in Bifurcation

Lesser than 20% of side branch in nonLM bifurcation supply more than 10% of myocardium.

JACC Cvintv 2017;10:571-81

4) What are Treatment Option for 0.0.1 Bifurcation Lesions?

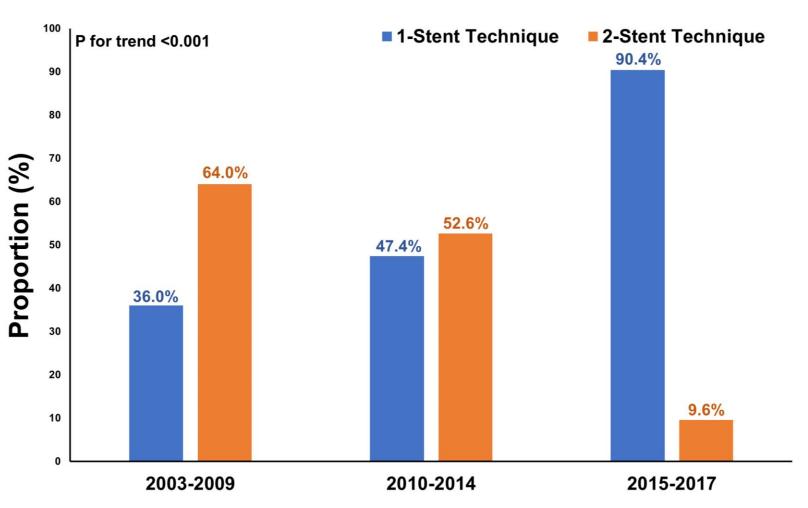
- Medical treatment alone
- Balloon angioplasty (+Drug Coated Balloon treatment)
- Stent strategy

Strong


- 1. Reduction in metal burdens
- 2. Preserving the native coronary bifurcation anatomy
- 3. Reduction the risk of thrombosis and the duration of DAPT

Weak

- 1. Risk of elastic recoil of SB ostium
- 2. Risk of coronary dissection to MV
- 3. Lack of large clinical data



5) Stent Strategy for 0.0.1 Bifurcation Lesions?

1 vs 2-stent technique

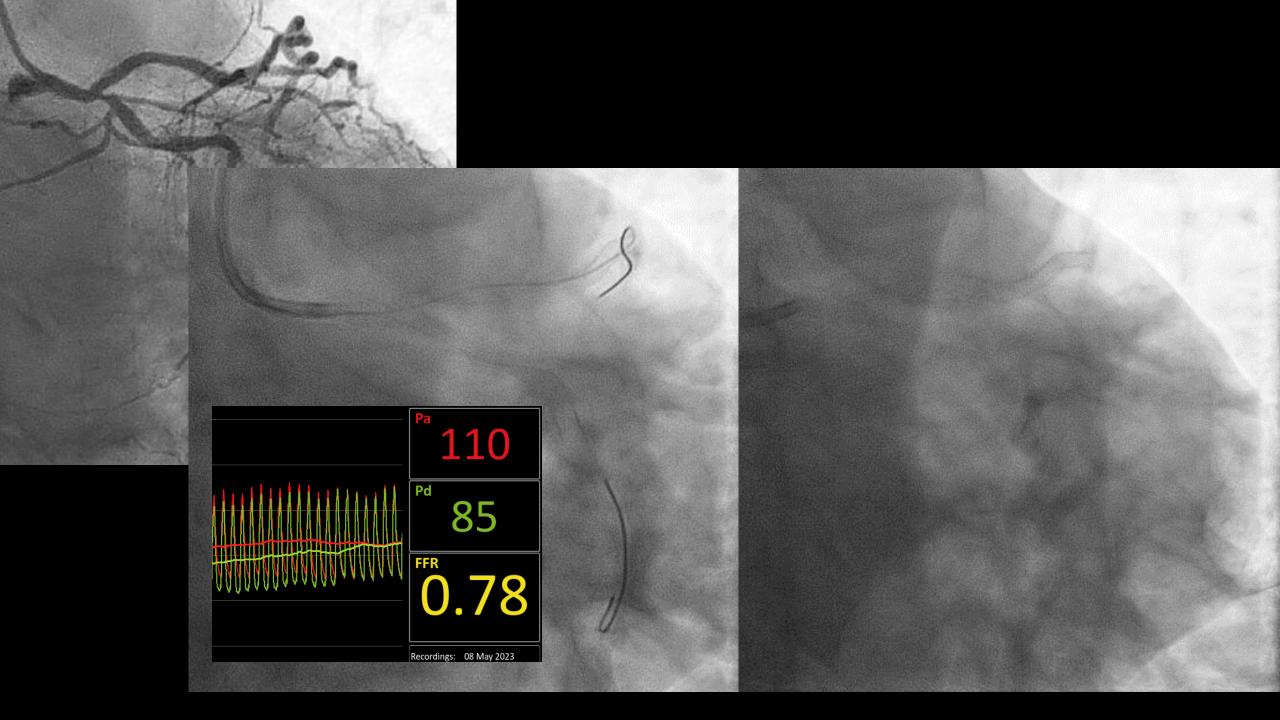
Trend of 001 Bifurcation Stent Strategy

KEIMYUNG UNIVERSITY DONGSAN HOSPITAL

Clinical and Procedural Characteristics

DONGSAN HOSPITAI

MAKE IT SIMPLEI: TECHNICAL FORUM A TO


1-Stent Strategy (n = 209)	2-Stent Strategy (n = 136) <i>P</i> Value		1-Stent Strategy 2-Stent Strategy (n = 209) (n = 136) <i>P</i> Value				
66.0 ± 9.9 165 (78.9)	64.3 ± 11.0 0.13	Treatment strategy 1-stent crossover	50 (<0.00		
116 (55.5)			(n = 86)	(n = 123)	P Value		
77 (36.8)	Bifurcation angle		69.4 ± 20.0	65.8 ± 21.1	0.22		
51 (24.4) 62 (29.7)	Before procedure						
23 (11.0)	MV RD, mm		3.22 ± 0.51	$\textbf{3.16} \pm \textbf{0.48}$	0.42		
3 (1.4)	SB RD, mm		$\textbf{2.74} \pm \textbf{0.45}$	$\textbf{2.50} \pm \textbf{0.42}$	<0.001		
5 (5.8)	MV MLD, mm		$\textbf{2.24} \pm \textbf{0.63}$	$\textbf{1.82} \pm \textbf{0.69}$	<0.001		
	SB MLD, mm		$\textbf{0.79} \pm \textbf{0.37}$	$\textbf{0.72} \pm \textbf{0.38}$	0.21		
	MV percent diamet	er stenosis, %	25.6 ± 18.1	42.0 ± 19.5	<0.001		
109 (52.2)			73.0 ± 12.8 71.4 ± 14.		0.42		
92 (44.0)		-			0.004		
8 (3.8)	• • •				0.004 _D		
	SB tesion tength, h		10.65 ± 7.11	12.77 ± 9.50	0.10		
	After procedure				D		
52 (24.9)	MV RD, mm		$\textbf{3.24} \pm \textbf{0.54}$	$\textbf{3.18} \pm \textbf{0.52}$	0.41		
75 (35.9)	SB RD, mm		$\textbf{2.78} \pm \textbf{0.43}$	$\textbf{2.49} \pm \textbf{0.48}$	< 0.001		
60 (28.7)	MV MLD, mm		2.48 ± 0.49	2.72 ± 0.50	0.001		
17 (8.1)	-				0.22		
5 (2.4)		t diameter stenosis %			< 0.001		
24 (11.5)					< 0.001		
	$\begin{array}{c} 66.0 \pm 9.9 \\ 165 (78.9) \\ \\ 116 (55.5) \\ 77 (36.8) \\ 51 (24.4) \\ 62 (29.7) \\ 23 (11.0) \\ 3 (1.4) \\ \\ 5 (5.8) \\ \\ 109 (52.2) \\ 92 (44.0) \\ 8 (3.8) \\ \\ \\ 52 (24.9) \\ 75 (35.9) \\ 60 (28.7) \\ 17 (8.1) \\ 5 (2.4) \\ \end{array}$	66.0 ± 9.9 64.3 ± 11.0 0.13 $1165 (78.9)$ $Bifurcation angle$ $51 (24.4)$ $Before procedure$ $62 (29.7)$ $Before procedure$ $23 (11.0)$ $MV RD, mm$ $3 (1.4)$ $SB RD, mm$ $5 (5.8)$ $MV MLD, mm$ $5 (5.8)$ $MV MLD, mm$ $109 (52.2)$ $92 (44.0)$ $92 (44.0)$ $8 (3.8)$ $55 (5.9)$ $MV Recent diamete$ $MV lesion length, m$ $SB lesion length, m$ $52 (24.9)$ $After procedure$ $75 (35.9)$ $SB RD, mm$ $60 (28.7)$ $MV RD, mm$ $17 (8.1)$ $5 (2.4)$ $24 (11.5)$ $SB residual percent SB r$	66.0 ± 9.9 $165 (78.9)$ 64.3 ± 11.0 0.13 Treatment strategy 1 -stent crossover116 (55.5) 77 (36.8) 51 (24.4) 62 (29.7) 23 (11.0)Bifurcation angle 1 -stent crossover23 (11.0) 3 (1.4)MV RD, mm $MV RD, mm$ 3 (1.4)SB RD, mm5 (5.8)MV MLD, mm90 (52.2) 92 (44.0) 8 (3.8)SB percent diameter stenosis, %109 (52.2) 92 (44.0) 	66.0 ± 9.9 64.3 ± 11.0 0.13 Treatment strategy 1-stent crossover 50.0 $165 (78.9)$ $1-5tent Strategy$ (n = 86) $116 (55.5)$ $77 (36.8)$ $1-5tent Strategy$ (n = 86) $51 (24.4)$ 69.4 ± 20.0 $62 (29.7)$ $1-5tent Strategy$ $23 (11.0)$ $MV RD, mm$ $3 (1.4)$ $SB RD, mm$ $5 (5.8)$ $MV MLD, mm$ 224 ± 0.63 $58 MLD, mm$ 2.24 ± 0.63 $58 MLD, mm$ 0.79 ± 0.37 MV percent diameter stenosis, % 25.6 ± 18.1 $109 (52.2)$ $92 (44.0)$ $8 (3.8)$ $58 percent diameter stenosis, % 73.0 \pm 12.8 MV lesion length, mm 2.86 \pm 7.94 58 lesion length, mm 2.78 \pm 0.43 60 (28.7) 17 (8.1) 58 RD, mm 2.78 \pm 0.43 MV MLD, mm 2.24 \pm 0.73 MV MLD, mm 2.24 \pm 0.73 $	Treatment strategy 1-stent crossover 50 (23.9) 0 (0) 166 (78.9) 1-Stent Strategy (n = 86) 2-Stent Strategy (n = 123) 116 (55.5) 77 (36.8) 51 (23.4) 62 (29.7) 23 (11.0) MV RD, mm 3.22 \pm 0.51 3.16 \pm 0.48 3.16 \pm 0.47 2.50 \pm 0.42 5 (5.8) MV RD, mm 2.24 \pm 0.63 1.82 \pm 0.69 SB MLD, mm 0.72 \pm 0.38 MV Percent diameter stenosis, % 25.6 \pm 18.1 42.0 \pm 19.5 SB percent diameter stenosis, % 7.3.0 \pm 12.8 7.1.4 \pm 14.0 MV percent diameter stenosis, % 7.3.0 \pm 12.8 7.1.4 \pm 14.0 MV RD, mm 2.24 \pm 0.54 3.18 \pm 0.52 5.8 percent diameter stenosis, % 2.7.4 \pm 0.43 2.49 \pm 0.43 MV RD, mm 2.7.8 \pm 0.43 2.49 \pm 0.48 60 60 (28.7) <th< td=""></th<>		

Primary End Point (Death+MI+TVR+Stent thrombosis)

	40 -					1-Stent	2-Stent		HR (95% CI)	<i>P</i> value	<i>P</i> value for interaction
Cumulative Incidence (%)		- 1-Stent strateg	ЗУ		Age ≥65 years	14/124 (16.2%)	11/75 (17.9%)		1.063 (0.482-2.344)	0.88	0.88
		- 2-Stent strategy		Age <65 years	6/85 (11.2%)	6/61 (10.0%)		1.096 (0.352-3.411)	0.87	0.48	
					Male	16/165 (15.3%)	12/101 (12.9%)	e	0.910 (0.430-1.928)		0.81
		Log rank <i>p</i> = 0.92			Female	4/44 (11.5%)	5/35 (16.1%)		1.508 (0.404-5.624)	0.54	0.48
	30 -				Diabetes mellitus	10/77 (19.7%)	6/45 (15.6%)	8	0.844 (0.306-2.325)	0.74	0.58
					Non-diabetes mellitus	10/132 (11.2%)	11/91 (13.1%)		1.251 (0.530-2.952)	0.61	0.56
len					Acute Coronary Syndrome	5/100 (9.2%)	8/76 (11.4%)		1.588 (0.517-4.875)	0.42	0.40
cid					Stable Ischemic Heart Disease	15/109 (18.7%)	9/60 (17.3%) —		0.910 (0.398-2.081)	0.82	0.40
Ľ	20 -				Left Main Bifurcation	10/52 (21.0%)	11/67 (17.1%)		0.851 (0.361-2.003)	0.71	0.81
ve					Non-Left Main Bifurcation	10/157 (10.6%)	6/69 (10.6%)		0.973 (0.352-2.690)	0.96	0.81
ati	10 -				Complex 0.0.1 [*]	6/27 (22.5%)	7/43 (17.6%)		0.824 (0.276-2.445)	0.72	0.66
In				Non-Complex 0.0.1	5/59 (9.6%)	8/80 (10.6%)		1.152 (0.377-3.520)	0.81	0.86	
μ				First-Generation DES	4/33 (12.5%)	7/60 (12.3%)	.	0.996 (0.292-3.403)	0.99	0.85	
ō		ـــر ^ب ر			Second-Generation DES	16/176 (15.1%)	10/76 (14.9%)	_	1.138 (0.516-2.511)		0.75
					Performing FKB	13/145 (14.4%)	12/120 (11.3%)	e	0.801 (0.364-1.761)	0.58	
			ہے۔		Not Performing FKB	7/64 (13.7%)	5/16 (31.3%)	• • ••••	2.723 (0.864-8.583)	0.09	0.08
	0 -				Use of Intravascular Imaging	8/96 (15.2%)	8/72 (12.6%)		0.906 (0.339-2.423)	0.84	
					No Use of Intravascular Imaging	12/113 (13.9%)	9/64 (15.3%)		1.165 (0.491-2.768)	0.73	0.77
	l	Ó	200	400	COBIS II	6/41 (16.3%)	7/73 (10.6%)		0.638 (0.214-1.899)	0.42	
No. at risk		-	200	Time (Days)							
1-9	Stent	209	168	125	COBIS III	5/45 (11.9%)	8/50 (16.7%)		1.541 (0.504-4.712)	0.45	0.74
2-9	Stent	136	126	107	RAIN	9/123 (13.8%)	2/13 (25.0%)		2.052 (0.443-9.505)	0.36	
		100	120	101			0.1	1 10			
							Favor 2-Stent Strategy	Favor 1-S Strateg			

MAKE IT SIMPLEI: TECHNICAL FORUM A TO

DONGSAN HOSPITAL

What we've found and what's supposed to be...

- Incidence of angiographic **0.0.1 bifurcation lesion was rare** (4.1%~).
- In recent years, there has been a tendency to prefer 1-stent strategy.
- Although there was no image data, angiographic 001 bifurcation lesion is not always real 0.0.1 lesion. Additional intracoronary evaluation (IVI or physiology) would be useful.
- Clinical outcome after PCI appear unfavorable. Therefore, we have to take a higher risk than our thought.
- It is imperative to **consider a variety of treatment modalities** when deciding on the **most appropriate approach** for each 0.0.1 bifurcation.