How I Use Angio-Based Physiology to Guide My Case in the Cath Lab: Practical Appraisal

William F. Fearon, MD

Professor of Medicine Chief, Interventional Cardiology Stanford University School of Medicine Chief, Cardiology Section VA Palo Alto Health Care System

Disclosures

Within the past 12 months, I or my spouse/partner have had a financial interest/arrangement or affiliation with the organization(s) listed below.

Affiliation/Financial Relationship

Grant/Research Support

Consulting Fees/Honoraria Major Stock Shareholder/Equity Royalty Income Ownership/Founder Intellectual Property Rights Other Financial Benefit

Company

Abbott, Medtronic NIH R61 HL139929-01A1 (PI) CathWorks (previous), HeartFlow

Why isn't Coronary Physiology Used More?

- It takes time...
- Wire handling characteristics...
- Pressure drift is frustrating...
- Side effects of adenosine...
- It is expensive...
- There is a small risk...

Angiography-Derived FFR

Measurement of FFR without the need of a pressure wire or adenosine

Drug-free, Wire-free Coronary Physiology

Resistance Analysis

4 Comprehensive Physiological Assessment

Case Presentation

- 43 yo woman with HTN, dyslipidemia, diabetes and kidney transplantation in 2016
- History of PCI of her LAD at an outside hospital
- Has developed daily exertional angina despite beta blocker and long-acting nitrate
- PET scan revealed small, moderate area of ischemia in the anterior wall
- Referred for cath...

Pre-processing Angiograms

Hover over the target vessel

Dynamic Selection of Angiograms

AI Communication and Editing Toolbar

Consider correcting radii or moving ostium location with this message

Back to Our Case...

Virtual Stenting of the Proximal Lesion

Virtual Stenting of the Distal Lesion

Virtual Stenting of Both Lesions

Measuring Tool

FFR_{angio} **Post-PCI of Proximal LAD**

FFR_{angio} **Post-PCI of Proximal LCx**

Outcomes

The FAST-FFR trial demonstrated a high sensitivity, specificity and accuracy of FFRangio compared with coronary pressure wire-based physiology

🗟 Characteristic

Sensitivity	93.5% (87.8, 96.6)
Specificity	91.2% (86.0, 94.6)
Diagnostic Accuracy	92.2% (88.7, 94.8)
Positive Predictive Value	89.0% (82.6, 93.2)
Negative Predictive Value	94.8% (90.3, 97.3)

Grey zone Accuracy (0.75-0.85)		
Sensitivity	88.5%	
Specificity	85.1%	
Diagnostic Accuracy	86.9%	

1-Year Clinical Outcomes Study – Results

	Deferred (n=888)	Revascularized (n=547)
CV death / MI / RR	1.6%	6.8%
CV death	0.4%	0%
Myocardial infraction	0.1%	1.0%
Repeat revascularization	1.2%	6.8%
Target vessel MI	0%	0.4%
Target vessel revascularization	0.3%	2.3%
Target lesion revascularization	0.3%	0.9%

ALL-RISE Trial

ALL₩R^T**SE**

1924 patient to be enrolled in up to 60 sites globally, with a limit of up to 200 patients per site.

Conclusion

- FFRangio can allow efficient and accurate assessment of your multivessel CAD patient.
- The pullback curve and virtual stenting and measurement tool have potential to improve pre-PCI planning and prediction of outcome.
- There are excellent data demonstrating correlation with pressure wire-based FFR. The ALL-RISE study will provide clinical outcomes data.

Thank You!

