Would I Still Use OCT in Bifurcation PCI After Illumien IV and Why?

Ziad A Ali MD DPhil

St Francis Hospital & Heart Center
Cardiovascular Research Foundation, New York, USA

zali@crf.org
Follow me @ziadalinyc

Disclosure Statement of Financial Interest

Within the past 12 months, I or my spouse/partner have had a financial interest/arrangement or affiliation with the organization(s) listed below.

Affiliation/Financial Relationship	Company
Grant/Research Support (Institutional)	NIH/NHLBI, Abbott, Philips, Boston Scientific, Abiomed, Opsens, Acist Medical, Medtronic Cardiovascular Systems Inc
Consulting Fees/Honoraria	Amgen, Astra Zeneca, Boston Scientific
Equity	Shockwave Medical

High-risk Patient

Medication-treated diabetes mellitus

High-risk Lesion

- NSTEMI
- STEMI >24 hours from symptom onset
- Long or multiple lesions (planned total stent length ≥28 mm)
- Diffuse or multi-focal in-stent restenosis
- Angiographic severe calcification
- Chronic total occlusion
- Bifurcation, planned to be treated with 2 stents

Qualifying Characteristics

	OCT (n=1231)	Angio (n=1250)	Difference [95% CI]
Medication-treated diabetes mellitus	40.4%	39.8%	0.5% (-3.3, 4.4)
Long or multiple lesions	69.3%	65.9%	3.4% (-0.3, 7.0)
NSTEMI	24.5%	23.8%	0.6% (-2.8, 4.0)
Angiographic severe calcification	11.4%	11.7%	-0.3% (-2.8, 2.2)
In-stent restenosis (ISR)	10.6%	11.0%	-0.5% (-2.9, 2.0)
Chronic total occlusion (CTO)	7.6%	6.3%	1.3% (-0.7, 3.3)
STEMI (>24 hours from onset)	5.4%	5.6%	-0.2% (-2.1, 1.6)
Bifurcation with 2 planned stents	3.2%	3.4%	-0.2% (-1.6, 1.3)

ILUMIEN IV – 2-Stent Bifurcation

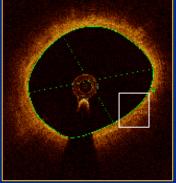
- Per Protocol only main branch OCT was required for final assessment

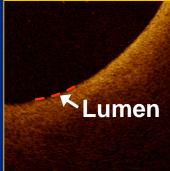
OCT Stent Sizing Algorithm

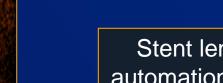
Pre-PCI OCT

Measure the EEL at both proximal and distal reference segments, if possible.2

Can the EEL be identified at the distal reference segment to allow vessel diameter measurement?³


Yes





No

Stent diameter decided by OCT measurement of mean EEL to EEL diameter rounded down to nearest stent size⁴ Stent diameter decided by OCT measurement of mean lumen diameter rounded up to nearest stent size⁴

EEL

Stent length determined by OCT automation adjusted for Xience DES⁵

OCT Stent Optimization Algorithm

Target MSA (in both proximal and distal segments of • Acceptable, ≥ 90%

the stent relative to the closest reference segment)

Unacceptable, <90%

Angiographic co-registration guided stent implantation

Angiographic success?

• ≤0% diameter stenosis

Post-dilation based on Pre-PCI OCT EEL

• ≥18atm with NC balloon in underexpanded segment

Post-PCI OCT

Target MSA criteria achieved?

Post-dilation based on Post-PCI OCT EEL

• ≥18atm with NC balloon in underexpanded segment

Reference segments free of major dissection with MLA ≥ 4.5mm²?

Place additional DES

 Unless anatomically prohibitive (i.e diffuse disease, tapering vessel)

Other reason for additional PCI?

Operator directed optimization

Baseline Characteristics

	Angio (n=43)	OCT (n=40)
Age, years	62.4 ± 9.1	65.6 ± 8.4
Male	86%	88%
Hypertension	63%	70%
Dyslipidemia	65%	60%
Diabetes mellitus	32%	27%
Current smoker	23%	22%
Serum creatinine, mg/dl	0.91 ± 0.18	0.92 ± 0.18
Silent ischemia	9.0%	5.0%
Stable angina	28%	38%
Acute coronary syndrome	34%	23%

Procedural Characteristics

	Angio (n=43)	OCT (n=40)
Stent length, mm	63.0 ± 32.4	59.8 ± 18.4
Maximal stent diameter, mm	3.2 ± 0.4	3.3 ± 0.4
Post-dilatation, n	94%	100%
Post-dilatation balloons used, n	3.3 ± 2.1	3.8 ± 2.5
Maximum device size, mm	3.5 ± 0.4	3.9 ± 0.6
Maximum inflation pressure, atm	17.8 ±2.9	20.2 ± 2.7
Procedure duration, min	79.3 ± 35.6	122.7 ± 53.6
Fluoroscopy duration, min	24.2 ± 10.8	37.5 ± 17.4
Radiation dose, Gy	2.0 ± 1.3	2.8 ± 1.8
Contrast volume, mL	238.2 ± 94.1	302.3 ± 101.4

Primary Imaging Endpoint Post-PCI MSA by OCT (mm²)

Angio L=43	OCT L=40	Difference
5.3 ± 1.6	5.7 ± 1.6	0.4

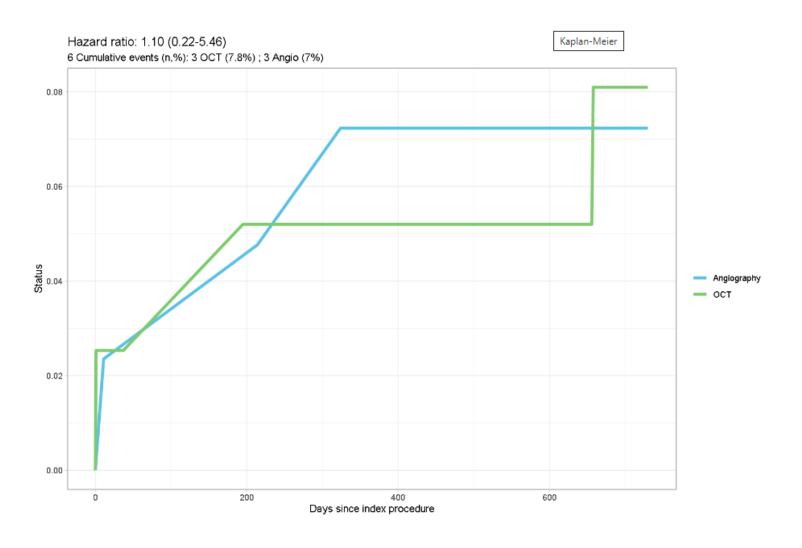
Stent Expansion Endpoints

	Angio (L=43)	OCT (L=40)
Min stent expansion, %	75.5 ± 14.5	76.2 ± 14.8
Mean stent expansion, %	106.6 ± 14.7	110.6 ± 17.3
Stent expansion		
- Acceptable (≥90%)	24%	48%

Post-procedure OCT Findings

	Angio (L=43)	OCT (L=40)
Dissection, any	37%	38%
Major	6.5%	2.5%
Minor	15%	25%

	Angio (L=43)	OCT (L=40)
Malapposition, any	74%	70%
Major	33%	23%
Minor	41%	48%


Post-procedure OCT Findings

	Angio (L=43)	OCT (L=40)
Tissue Protrusion, any	50%	43%
Major		
Minor	50%	43%

	Angio (L=43)	OCT (L=40)
Reference Segment Disease, any	13%	11%
Focal	9%	9%
Diffuse	4%	3%

Target Vessel Failure

2-Year Clinical Outcomes

	Angio (n=43)	OCT (n=40)	Hazard Ratio (95% CI)
Target Vessel Failure	7.0%	7.8%	1.10 (0.22, 5.46)
-Cardiac	0%	0%	<u>-</u>
-TV-MI	0%	2.5%	<u>-</u>
-Periprocedural MI	0%	2.5%	<u>-</u>
- ID-TVR	7.0%	7.8%	1.08 (0.22, 5.35)
- Stent Thrombosis	0%	0%	-

Sub-group Analysis

Subgroup	OCT	Angiography		Hazard Ratio [95% CI]
All Subjects (n=2487)	7.4%	8.2%	н+	0.90 [0.67, 1.19]
Medication-treated diabetes				
Medication-treated Diabetes (n=995)	10.1%	10.1%	H++	0.98 [0.66, 1.46]
Others (n=1486)	5.6%	7.0%	⊢ •+1	0.80 [0.53, 1.22]
Total stent length ≥28mm				
≥28mm (n=1677)	6.4%	7.9%	⊢ •+	0.81 [0.56, 1.16]
<28mm (n=804)	9.7%	8.7%	-	1.09 [0.68, 1.73]
Two-stent bifurcation				
Yes (n=83)	7.8%	7.0%		1.10 [0.22, 5.46]
No (n=2398)	7.4%	8.2%	H	0.89 [0.66, 1.19]
Severe calcification				
Yes (n=286)	6.6%	12.7%	 -	0.50 [0.22, 1.11]
No (n=2195)	7.5%	7.6%	H -1 -1	0.98 [0.72, 1.34]
NSTEMI/ STEMI >24h				
Yes (n=735)	5.9%	5.9%		1.00 [0.54, 1.82]
No (n=1746)	8.1%	9.1%	H	0.87 [0.63, 1.21]
СТО				
Yes (n=173)	3.3%	5.4%	-	0.60 [0.13, 2.69]
No (n=2308)	7.8%	8.4%	H+1	0.92 [0.68, 1.23]
Diffuse or multi-focal ISR				(,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
Yes (n=268)	15.2%	13.5%	⊢ ∎	1.06 [0.55, 2.05]
No (n=2213)	6.5%	7.5%	H-1	0.86 [0.63, 1.19]
			0 2 0 54 2-5	
		_	0.2 0.51 2.5	10
		Favo	rs OCT Favoi	rs Angio

 In keeping with EBC recommendations, 2-stent bifurcation PCI was uncommon in ILUMIEN IV

- OCT-guidance resulted in a larger MSA than angiography guidance, with greater procedural success
- OCT-guidance led to fewer major dissections and major malapposition
- The 2-year rates of TVF were not different between OCT-guided and angiography-guided PCI

OCT Optimised Bifurcation Event Reduction

OCT Protocol – Timing principles

Before stent implantation

Evaluation of predilatation Planning of the procedure

After rewiring

Wire control
Stent optimization

Final evaluation

OCT treatment goals

Holm NR et al. Rational and design of the European randomized Optical Coherence Tomography Optimized Bifurcation Event Reduction Trial (OCTOBER), Am Heart J 2018

OCT Protocol – Four treatment goals

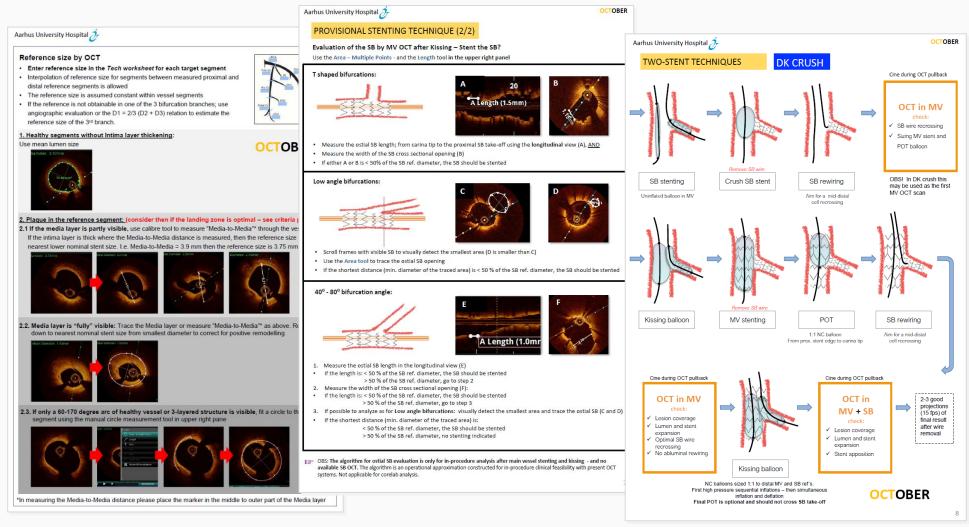
Optimal lesion coverage

No residual edge disease or untreated lesions

No stent malapposion

Optimal stent expansion

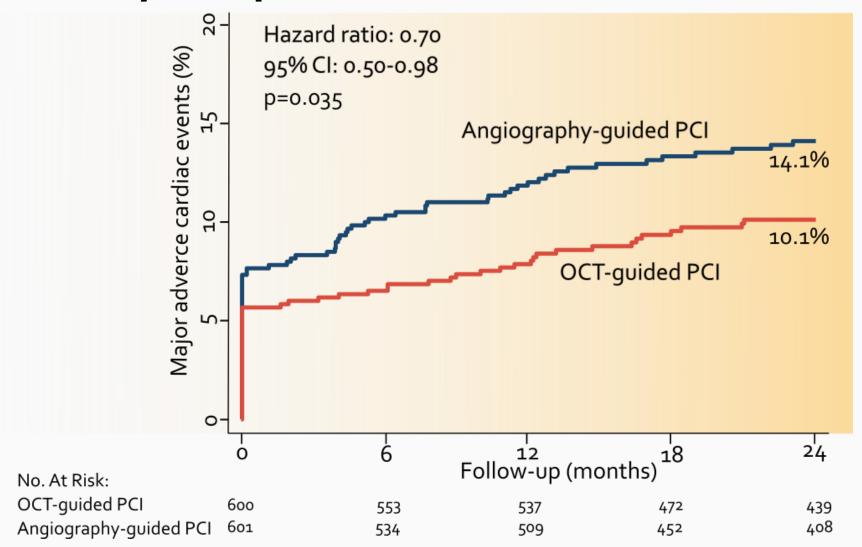
Stent diameter ≥ 90% of the corresponding segment's reference diameter



No unintended crushed or distorted stent segments

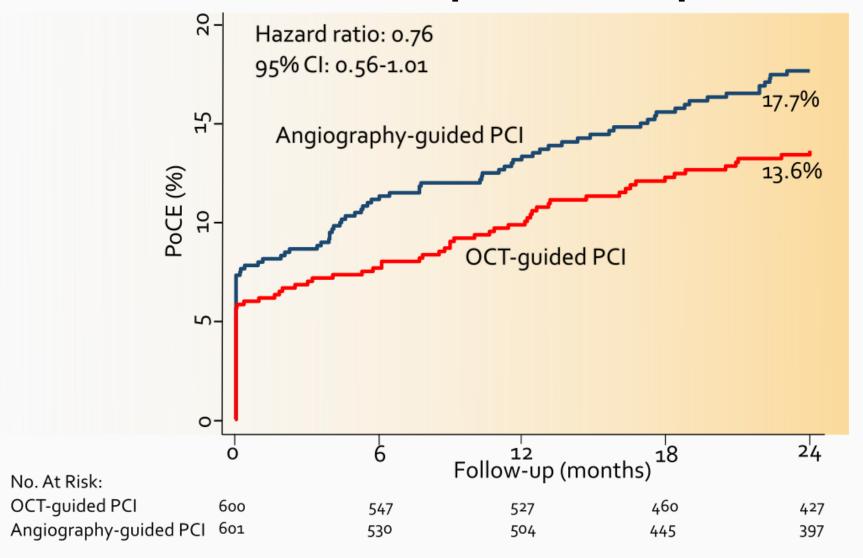
Holm NR et al. Rational and design of the European randomized Optical Coherence Tomography Optimized Bifurcation Event Reduction Trial (OCTOBER), Am Heart J 2018

OCT-guiding protocol

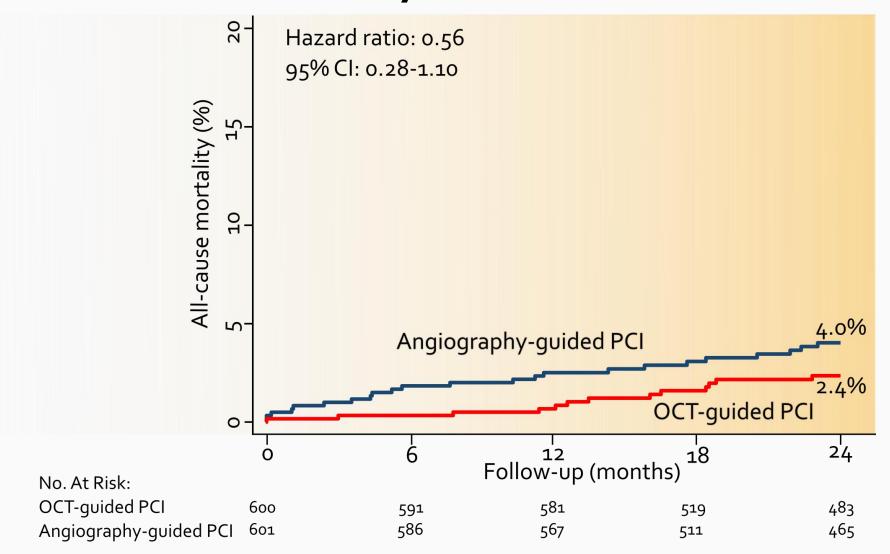

Holm NR et al. Rational and design of the European randomized Optical Coherence Tomography Optimized Bifurcation Event Reduction Trial (OCTOBER), Am Heart J 2018

Primary endpoint - MACE

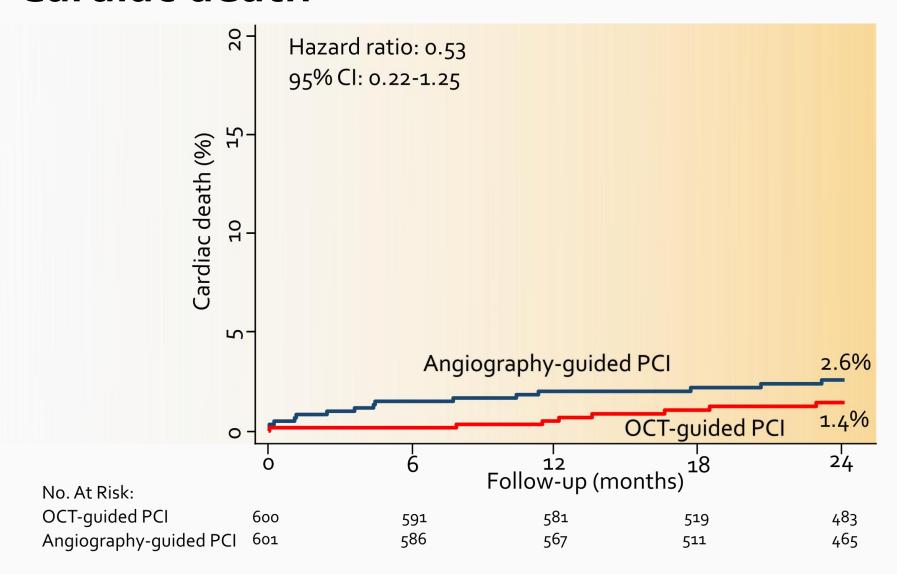
MACE: cardiac death, target lesion myocardial infarction, ischemia-driven target lesion revascularization


Kaplan Meier estimates Comparison by unadjusted Cox analysis Confirmed by adusted Cox analysis

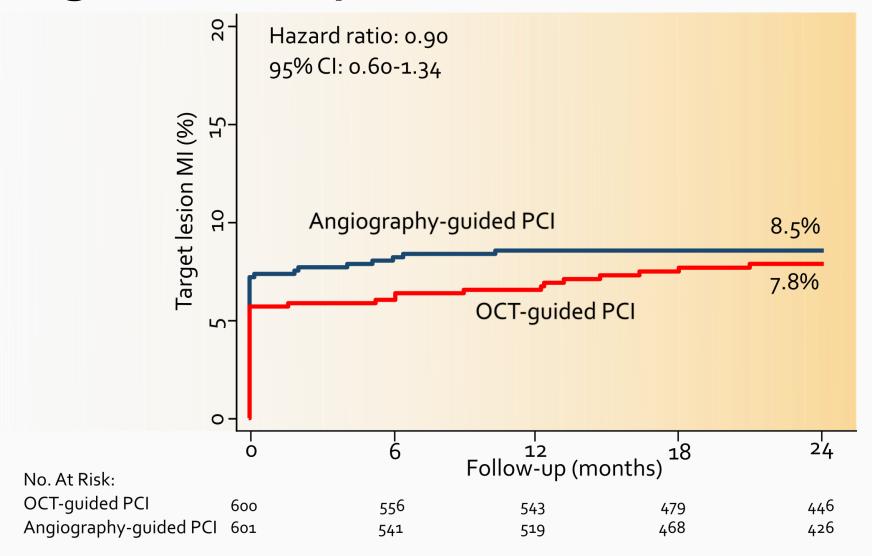
Patient-oriented Composite Endpoint (PoCE)



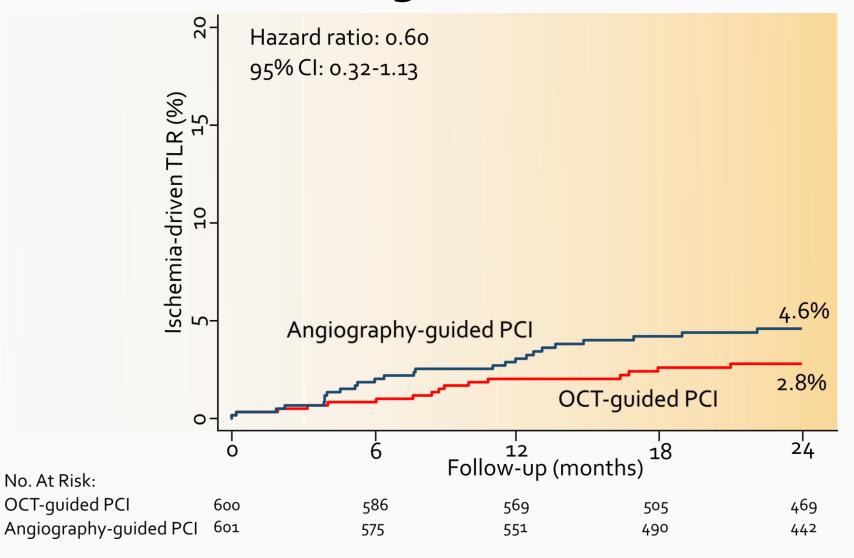
PoCE : All-cause mortality, Any myocardial infarction, any repeat revascularization

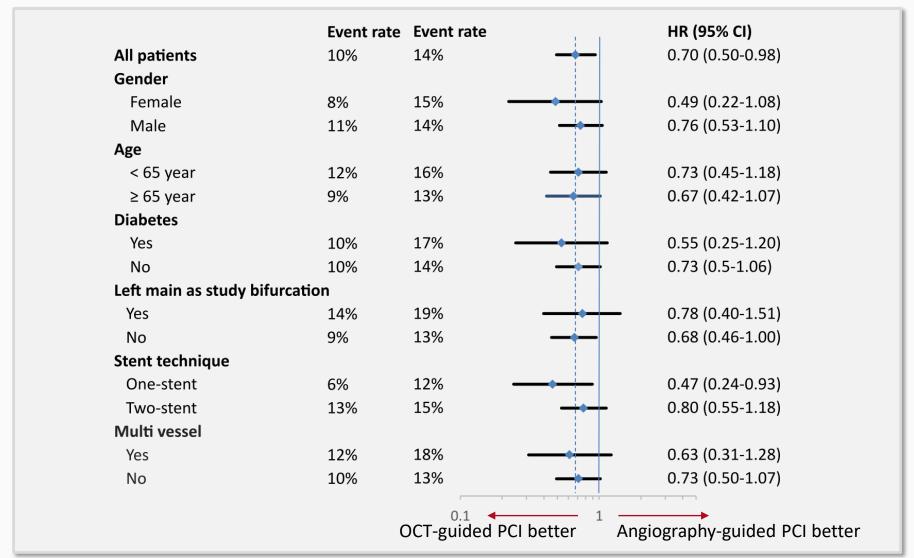

All-cause mortality

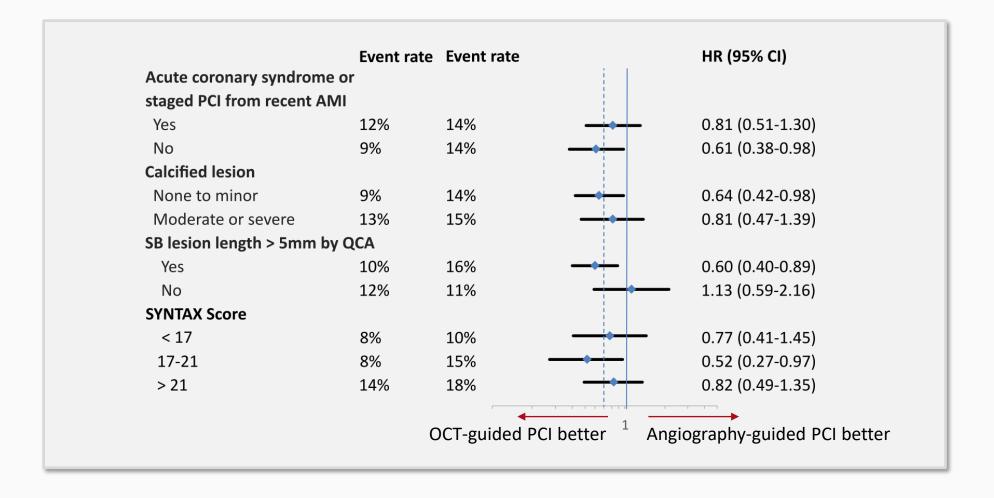
Cardiac death



Target-lesion myocardial infarction




Ischemia-driven target lesion revascularization



Subgroup analyses 1/2

Subgroup analyses 2/2

2-Year Clinical Outcomes

 Bifurcation PCI in ILUMIEN IV was a very small subgroup, from which definitive value of OCT cannot be determined.

- OCT-guidance in the dedicated OCTOBER study showed a marked advantage over angiographyguidance.
- The totality of data supports an OCT-guided strategy.