AGENTTM Drug-Coated Balloon Update: Are all DCBs the Same

Dr Simon Walsh MD Roval Victoria Hospital, Belfast, Northern Ir

Conflict of Interest

- Employee Boston Scientific 2021-2024
- Independent Consultant to Boston Scientific

Technology and Mechanism

AGENT™ - The Technology

Catheter Drug Active pharmaceutical ingredient Laser Bonded Tip Designed to improve crossability in complex lesions Z Glide™ EDA APPROVEL Paclitaxel optimal dose 2µg/mm² Lubricious coating designed to reduce friction for enhanced **Excipient** trackability Maintain coating integrity and facilitate drug transfer **Bi-Segment** Flexible Inner Shaft Designed and positioned for optimal Pushable transition from proximal Acetyl Tributyl Citrate (ATBC) pushability to distal flexibility

Three Critical Phases of Paclitaxel-DCB Drug Delivery

Following Optimal Lesion Preparation

1. Surapaneni, M., et al. "Designing Paclitaxel drug delivery systems aimed at improved patient outcomes: current status and challenges." International Scholarly Research Notices (2012).

Targeted Drug Delivery

AGENT[™] Crystalline Structure is Hydrophobic and Demonstrates Durability Under Hydration¹

Rapid Drug Absorption

AGENT[™] is Formulated With Sharp-Edge Lipophilic Paclitaxel to Accelerate Absorption

Sharp Edge Paclitaxel (High Acute Tissue Absorption¹)

Rounded Structure (Low Acute Tissue Absorption)

'Limus DCB

Sustained Retention with Crystalline Paclitaxel

TransPax[™] Coating Formulated Into a Uniform Crystalline Structure for Sustained Retention¹

1. BSC Internal Test. Results of internal bench studies are not representative of clinical performance. Clinical results may vary.

Why Paclitaxel DCB?

Neointimal Hyperplasia Restenotic cascade following POBA

DES vs DCB Effect on the Restenotic Cascade

Conceptual Representation

Arrows Represent Magnitude of Drug Release

DCB Has Different Drug Delivery Mechanism from DES

Different technology mechanisms require different drug characteristics

Adapted from Wessely, Rainer et al. Thrombosis and hemostasis vol. 97,6 (2007): 1003-12

Paclitaxel is Better Suited for a Coronary DCB Application

Different technology mechanisms require different drug characteristics

Image adapted from Endovascular Today

1. Surapaneni, M., et al. "Designing Paclitaxel drug delivery systems aimed at improved patient outcomes: current status and challenges." International Scholarly Research Notices (2012).

Izafriri, A. et al. Journal of Controlled Release 310 (2019): 94-102.
Juan Granada, <u>Endovascular Today</u> 2017.

'Limus is Better Suited for a Coronary Stent Application

Different technology mechanisms require different drug characteristics

Tissue delivery of drug can be highly variable across different devices

Paclitaxel in combination with DCB application transfers more drug over time

Data on file at BSC. © 2023 Boston Scientific Corporation or its affiliates. All rights reserved. IC-XXXX APR2023

***AUC** = Area under the curve (total drug exposure) ***C**_{max} = Peak drug in tissue concentration

Paclitaxel- (PCB) vs. Sirolimus- (SCB) Drug Coated Balloon de novo Lesions

PCB vs. SCB – de novo Late Lumen Loss

1.0

1.5

2.0

0.5

Late Loss, mm

0

-0.5

-1.0

Remember: How it is done matters

Cumulative Incidence of TLF According to Paclitaxel DCB Technique

N=256 Consecutive Patients from 4 Korean Centers

- Fully optimized TLF 8.3%
- Partially optimized TLF 19.2%
- Non-optimized TLF 66.7%

DCB Global Landscape: commonly used (amongst others)

	Scientific	B BRAUN	MagicTouch Concept Medical	MedAlliance SWISS • MEDICAL • TECHNOLOGY
Product(s)	AGENT	SeQuent Please (PCB 2006 & SCB 2021)	MagicTouch	SELUTION
Drug	Paclitaxel 2 µg/mm ²	Paclitaxel 3 μg/mm² Sirolimus 4 μg/mm²	Sirolimus 1.27 µg/mm ²	Sirolimus 1 µg/mm ²
Availability	CE, Japan, Korea FDA approval – In-process	CE, Asia	CE TBD Japan	CE
Mechanism of action	Optimal dose of anti-proliferative paclitaxel designed for targeted transfer, rapid absorption and sustained retention	Matrix coating of paclitaxel and iopromide or sirolimus and BHT for effective drug release into the vessel wall.	Submicron limus particles encapsulated in phospholipid biocompatible drug carrier	90 days Limus release with advanced MicroReservoir and Cell Adherent Technology

PTX v PTX comparisons

Learn More About IVUS + Stent Failure on EDUCARE:

Prospective, randomized, multicenter, non-inferiority trial across 15 European sites

- Key Inclusion Criteria: Patients with in-stent restenosis of a lesion previously treated with BMS or DES, Lesion in native coronary artery with length ≤ 28 mm, RVD ≥ 2.0 mm ≤ 3.5, and %DS ≥ 70 < 100 if asymptomatic or %DS ≥ 50 < 100% if symptomatic
- Key Exclusion Criteria: Bifurcation, LM, SVG, total occlusion, recent PCI, acute MI

AGENT™-ISR Trial: Primary Endpoint

AGENT™-ISR Trial: Clinical Endpoints at 3 Years

Clinical Endpoints at 3 Years

ISAR DESIRE AGENT 3A Study Design

Prospective, non-randomized, single-arm study compared to a *historical control* from ISAR DESIRE 3 trial

- Key Inclusion Criteria: Myocardial ischemia with ≥50% restenosis of –limus DES
- Key Exclusion Criteria: LM, Graft, SV <2.0 mm

Primary Endpoint: In-stent percent diameter stenosis (%DS) at 6 to 8 months via angiography Clinical follow-up: 1-year

ISAR DESIRE AGENT 3A Results

100 P_{non-inferiority}=0.006 AGENT™ 38.9 ± 18% Cumulative rate (%) Sequent Please 38.0 ± 22% 0 20 40 60 80 100 0 % Diameter stenosis

6-8 Month Primary Endpoint

1-Year Clinical Outcomes

Non-inferiority met for In-stent percent diameter stenosis (%DS) angiographic primary endpoint

For Small Vessels

AGENT[™]-ISR Trial AGENT[™] Japan Small Vessel Study Design

Prospective, multicenter trial across 14 sites in Japan

- Key Inclusion Criteria: Lesion Length ≤ 28 mm, De Novo, RVD ≥2.00 and <3.00 mm
- Key Exclusion Criteria: LM Disease, Graft Disease, Complex Bifurcation, Thrombus or Severe Calcification

AGENTTM Japan Angiographic Characteristics

Other PTX v Limus Clinical Trials

Paclitaxel vs Sirolimus for DCBs – No Class Effect?

3 New Studies from TCT 2023 Comparing Angiographic Results

Post-PCI MLD	1.52 mm	1.39 mm	2.35 mm	2.24 mm	1.93 mm	1.94 mm
MLD at Follow-up	1.22 mm	1.36 mm	2.19 mm	2.16 mm	1.60 mm	1.65 mm
Late Lumen Loss	0.32 mm	0.00 mm	0.13 mm	0.03 mm	0.35 mm	0.31 mm
TV-MI	0%	0%	0%	0%	0.8%	0%
TLR	11.5%	6.7%	6.0%	9.0%	11.5%	10.2%

The **Sirolimus Magic Touch failed to demonstrate non inferiority** to the Paclitaxel SeQuent Please for angiographic net gain at 6 months in de novo small vessels (SCB 0.25 mm vs PCB 0.48 mm, **p=0.002**)

Sirolimus Sequent SCB was non-inferior to Paclitaxel SeQuent Please Neo for angiographic late lumen loss at 6 months in de novo vessels **Sirolimus Sequent SCB** was non-inferior to Paclitaxel SeQuent Please Neo for angiographic late lumen loss at 9 months in in-stent restenosis

REFORM (ISR): Biolimus v PTX

Key findings:

Non-inferiority was not shown by the BCB (n=135) in comparison to the PCB (n=67), with an observed %DS in the BCB group of $41.8 \pm 21.3\%$ compared to $31.2 \pm 17.8\%$ in the PCB group, a mean difference between the groups of 10.6% (95% CI 3.97–17.20) and a p-value for non-inferiority of 0.34.

clinical f/u at 6, 12 and 24-month post procedure

S Fitzgerald et al. Heart 2023;109:A8-A10

TRANSFORM 1 SV: Sirolimus vs PTX

Conclusions about DCBs in 2024

- PTX appears better suited to the DCB class than the Limus analogues for drug delivery to tissue
- It is possible that Limus DCBs may prove to have lower efficacy, although larger trials are needed
- The drug formulations, excipients and tissue transfer differ across the PTX DCBs, although no definitive (or large) trials show any significant differences to date between outcomes with these devices
- Evidence to date for DCB vs DCB is typically generated from very small numbers of patients
- We should be wary over DCB vs DES data None use IVUS optimised DES implant as the gold standard comparator (including enrolling studies) and when the current generation of larger trials report, we are still likely to be asking questions as a result