What is a Vulnerable Plaque? Insight from CT and OCT Studies

TCTAP 2024

Ik-Kyung Jang, MD, PhD Allan and Gill Gray Professor of Medicine Harvard Medical School

CORRIGAN MINEHAN HEART CENTER

- Endowed Professorship from Harvard Medical School
- Allan Gray Fellowship Funds
- Chatter Foundation
- Abbott Fellowship Grant

Interview with WSJ

The aim of our research is to identify "vulnerable plaques" in the coronary tree and treat them with local or segmental therapy.

Jang IK. 2003

What is a "Vulnerable Plaque"?

MASSACHUSETTS GENERAL HOSPITAL CORRIGAN MINEHAN HEART CENTER

A plaque that is prone to disruption (rupture or erosion) leading to acute occlusive thrombosis resulting in MI or cardiac death.

Minami Y, Jang IK. Braunwald Heart Disease Companion 2024

Definition of "Vulnerable Plaque" in Recent Clinical Studies

MASSACHUSETTS CENERAL HOSPITAL CORRIGAN MINEHAN HEART CENTER

A plaque that is prone to rapid progression leading to progressive angina requiring revascularization, MI, or cardiac death.

What is a "Vulnerable Plaque"?

Plaque Phenotype

VS.

Plaque Burden

"Vulnerable": "wound" by Latin

"easily hurt or harmed" by Britannica

Plaque Phenotype

- Atherosclerosis is a pan-vascular process.
- Plaque phenotype changes over time.
- Subclinical plaque disruption and healing contributes to plaque progression.
- Plaque erosion is responsible for 25-40% of ACS.

Pan-coronary non-culprit plaque phenotype (patient-based analysis)

Patients with non-culprit plaque rupture

Patients without non-culprit plaque rupture

Vergallo R, Jang IK. ATVB 2016

Spatial Distribution of Plaque Phenotypes

Araki M, Jang IK. JACC Img 2020

PCAT (peri-coronary adipose tissue) attenuation: Vascular Inflammation

CCS

Araki M, Jang IK. Circ Img 2022

Plaque Phenotype

- Atherosclerosis is a pan-vascular process.
- Plaque phenotype changes over time.
- Subclinical plaque disruption and healing contributes to plaque progression.
- Plaque erosion is responsible for 25-40% of ACS.

Dynamic Nature of Coronary Plaque Phenotype

мÊ GENERAL HOSPITAI Corrigan Minehan HEART CENTER

MASSACHUSETTS

Kubo T, Mintz G. JACC 2010

Comparison of plaque vulnerability between OCT and CTA

	PR	LAP	NRS	SC	Non-HRP
TCFA	38.1%*	40.3%*	49.4%*	37.0%*	14.0%
Lipid-rich plaque	92.2%*	93.8%*	95.9%*	87.7%*	63.6%
Macrophage	76.5%*	78.6%*	82.9%*	73.7%*	53.2%
Microvessels	56.6%*	53.8%*	58.2%*	58.5%*	34.1%
Cholesterol crystal	37.0%*	40.8%*	48.2%*	35.7%*	18.2%
Layered plaque	58.2%*	55.6%*	62.4%*	57.0%*	36.7%

* indicates P<.001 vs. Non-HRP

Kinoshita D, Jang IK. JACC Img2024

Plaque Phenotype

• Atherosclerosis is a pan-vascular process.

- Plaque phenotype changes over time.
- Subclinical plaque disruption and healing contributes to plaque progression.
- Plaque erosion is responsible for 25-40% of ACS.

Healed (Layered) Plaque

Evidence of previous plaque disruption was present in up to <u>73%</u> in autopsy cases

Fracassi F, Jang IK. JACC 2019 Vergallo R, Jang IK. JAMA Card 2019 Russo M, Jang IK. ATVB 2020

Plaque Phenotype

• Atherosclerosis is a pan-vascular process.

- Plaque phenotype changes over time.
- Subclinical plaque disruption and healing contributes to plaque progression.
- Plaque erosion is responsible for up to 40% of ACS.

VP Clinical Studies

The PROSPECT Study

Type of Events	Events due to Nonculprit Lesions
Death from cardiac causes	
Myocardial infarction	
Rehospitalization for angina	
Total MACE at 3.4 yrs	11.6% (75 patients)

Stone GW. NEJM 2011

PROSPECT: Multivariable Correlates of Non-Culprit Lesion Related Events

Independent predictors of lesion level events by Cox Proportional Hazards regression

Variable	HR [95% CI]	P value
PB ≥ 70%	5.03 [2.51, 10.11]	<0.0001
MLA ≤ 4.0 mm2	3.21 [1.61, 6.42]	0.001
VH-TCFA	3.35 [1.77, 6.36]	0.0002

VH-TCFA: Plaque burden (PB) > 40% + absence of visible fibrous cap

PROSPECT: Take home message

CORRIGAN MINEHAN HEART CENTER

- Low positive predictive value
 - Risk of MI (STEMI + NSTEMI) from VH-TCFA is 1%.
 - One-half of pts with MACE had no HRP.
- <u>Plaque burden</u> (vs.plaque phenotype) is an important factor for development of recurrent ischemic events.

Plaque burden

PREVENT Primary Composite Outcome

Courtesy of Park SJ. Lancet 2024

PREVENT Primary Composite Outcome

Endpoints	Preventive PCI plus OMT (N=803)	OMT alone (N=803)	Difference in event rates (95% Cl)	Hazard ratio (95% CI)
Ischemia-driven target-ves	0-44 (0-25 to 0-77)			
At 2 years	1 (0.1%)	19 (2·4%)	-2·3 (-3·4 to -1·2)	
At 4 years	10 (1.7%)	29 (4·4%)	-2·7 (-4·6 to -0·8)	
At 7 years	17 (4.9%)	38 (8.0%)	-3·2 (-7·4 to 1·1)	
Hospitalization for unstab	0-19 (0-06 to 0-54)			
At 2 years	1 (0.1%)	12 (1-5%)	-1.4 (-2.3 to -0.5)	
At 4 years	4 (0.7%)	16 (2·4%)	-1.7 (-3.0 to -0.4)	
At 7 years	4 (0.7%)	21 (4-9%)	-4·2 (-7·17 to -1·4)	

• Detection of VP helps to risk stratify patients.

- Minami Y, Jang IK. Braunwald Heart Dis.

- Plaque burden is a strong predictor for future revascularization.
 - Stone G. NEJM 2011
 - Park SJ. Lancet 2024
- Preventive PCI reduces revascularization, MI, or cardiac death. during 7-year FU.

- Park SJ. The Lancet 2024

• "High risk plaque" rather than "vulnerable plaque" may be a more appropriate terminology.

Thank you

1811

ijang@mgh.harvard.edu

