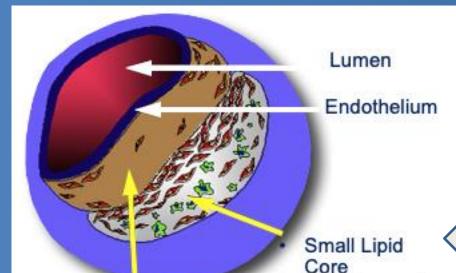
TCTAP

Identifying vulnerable plaque features that predict cardiovascular events in patients with acute coronary syndromes and multivessel disease: the COMPLETE-2 OCT study

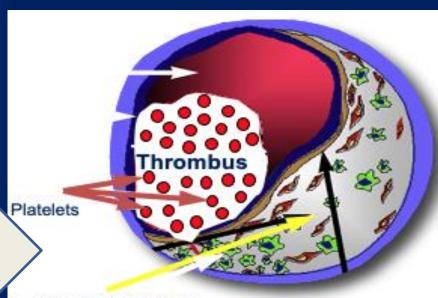
Shamir R. Mehta MD, MSc, FRCPC, FACC, FESC

Douglas A. Holder Endowed Chair in Interventional Cardiology
Professor of Medicine, McMaster University
Senior Scientist, Population Health Research Institute
Director, Interventional Cardiology
Hamilton Health Sciences


Understanding plaque morphology of non-culprit lesions in relation to physiology/angiography/image-guided revasc

Stable CAD

ACS Non-culprit


STEMI culprit

Fibro-calcific plaques **Low Risk of Rupture**

Physiology vs **Angiography Guided** Strategy?

Plaque Rupture Medical Emergency

50% are TCFA 50% are stable plaques

- Necrotic Lipid Core
- Inflammatory
- Cells/Macrophages

Thin

Physiology-Guided Strategy Standard

Thick

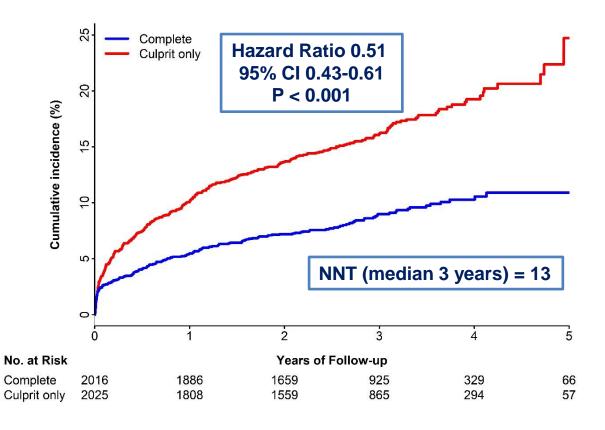
Fibrous Cap

Few Macrophages

No thrombus

Fibrous Cap

Angiography-Guided Revas Standard (PPCI)

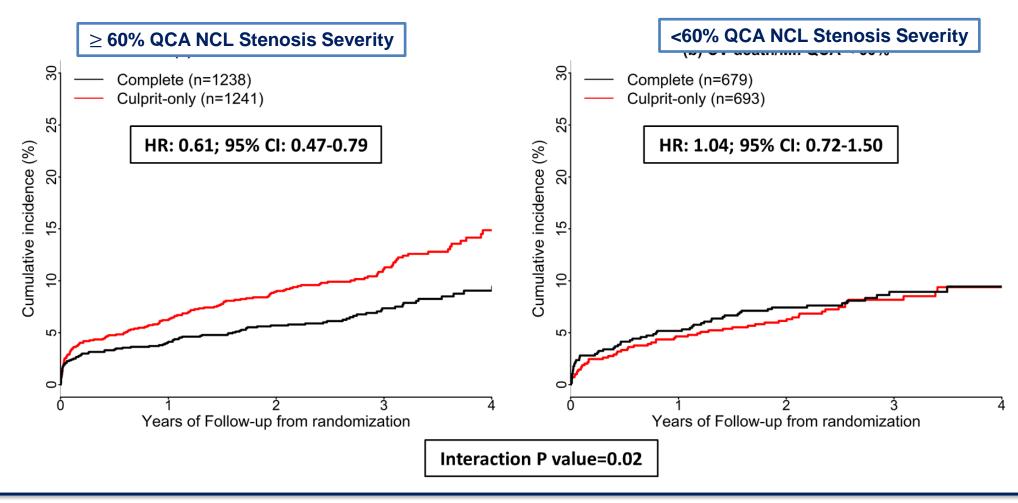

COMPLETE Trial: Primary Outcomes

Multivessel vs Culprit Lesion-only PCI for STEMI and muti-vessel CAD

CV Death or New MI

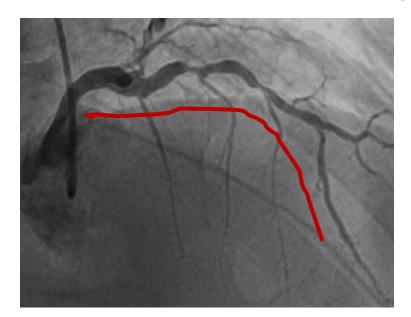
Complete Hazard Ratio 0.74 Culprit only 95% CI 0.60-0.91 P=0.004Cumulative incidence (%) NNT (median 3 years) = 37 0 Years of Follow-up No. at Risk 1904 1677 938 337 Complete 2016 70 2025 1897 1666 933 310 Culprit only

CV Death, New MI, or IDR

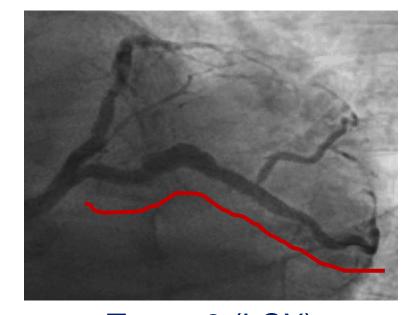


Outcomes by NCL Stenosis QCA Severity: Greater Benefit if Tighter NCL's

CV Death and New MI



OCT COMPLETE: Imaging Protocol


OCT imaged segment (staged non-culprit PCI procedure)

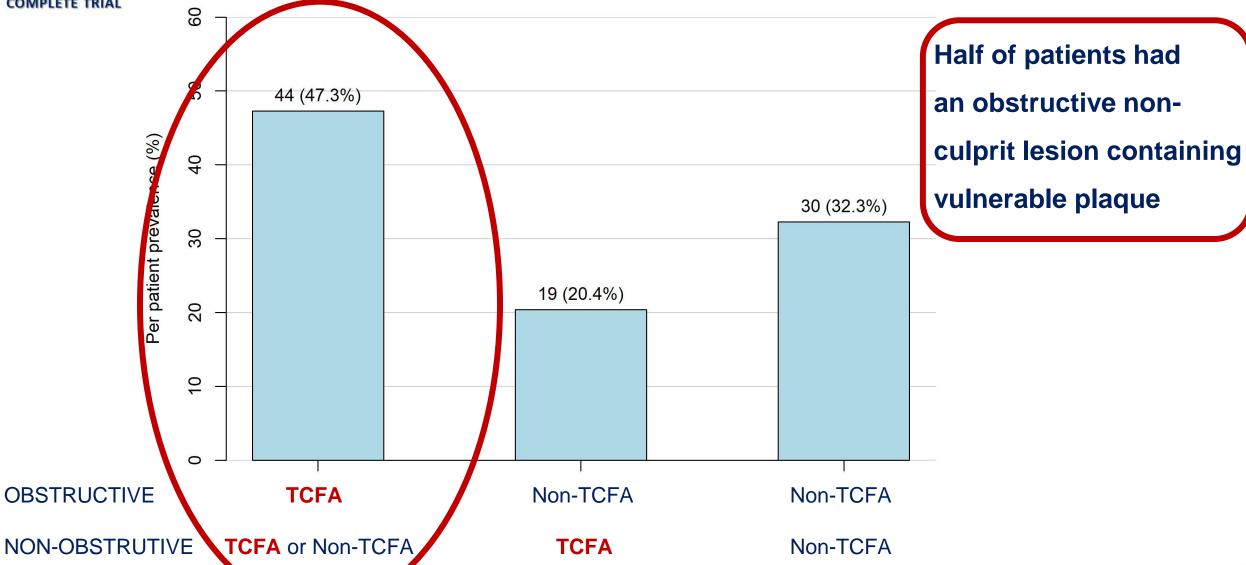
Target 1 (LAD) **Obstructive NCL**

Target 2 (RCA) Additional vessel Obstructive or Non-obstructive lesions If \geq 50 mm unstented segment

Target 3 (LCX) STEMI vessel

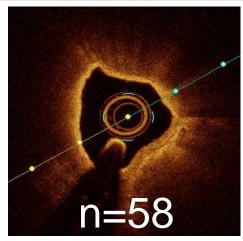
- Number of pullbacks / patient (mean): 2.82
- Imaged length / patient (mean): 152.5 mm

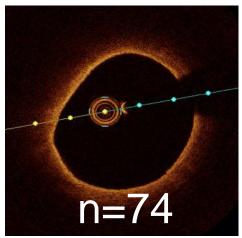
Example: Inferior STEMI Culprit lesion LCX, Non-culprit lesion LAD



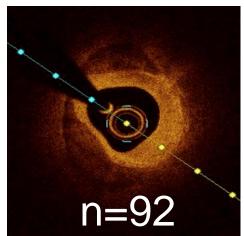
Results: Prevalence of TCFA (per patient)

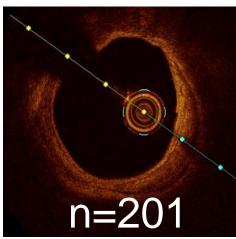
Classification of non-culprit lesions


TCFA (FCT < 65 μm overlying a lipidic plaque)


Yes No

Obstructive ≥70% DS


2


Yes

N=425

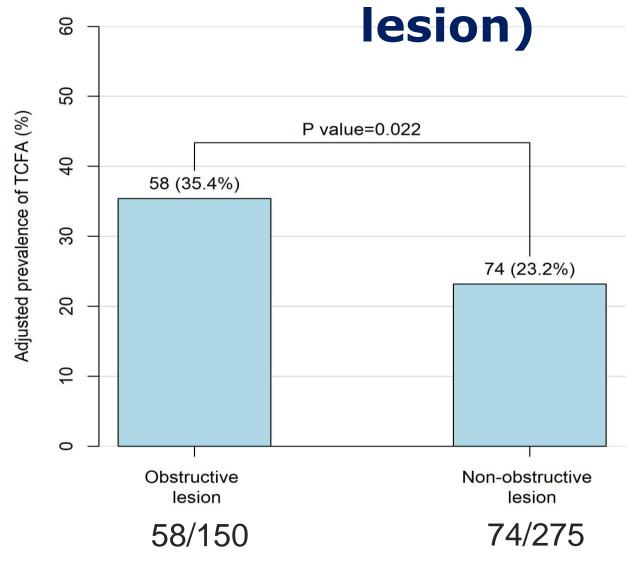
TCFA: Thin Cap Fibro Atheroma FCT: Fibrous Cap Thickness

Results: Features of TCFA vs Non-TCFA in Obstructive lesions (\geq 70% diameter stenosis)

	TCFA (N=58)	Non-TCFA (N=92)	P value	
Lesion Length (mm)	23.1	20.8	0.16	
Number of I LIPID quadrants	55.2	19.2	<0.001	
% of LIPID quadrants	78.4	36.5	<0.001	
Number of Fibrous quadrants	9.4	21.2	<0.001	
% of Fibrous quadrants	16.9	43.7	<0.001	
Number of Calcified quadrants	2.5	9.8	<0.001	
% of Calcified quadrants	4.1	20.1	<0.001	
Maximum Lipid Arc	342.2	212.5	<0.001	
Mean Lipid Arc	203.8	84.5	<0.001	
Mean FCT (μm)	54.5	152.2	<0.001	
Minimum Lumen Area	1.9	1.7	0.52	
Macrophages	55	48	<0.001	
Microvessels	19	28	0.77	
Cholesterol Crystals	48	42	<0.001	

Obstructive TCFA lesions had significantly more lipid and more features of plaque vulnerability compared with non-obstructive TCFA **lesions**

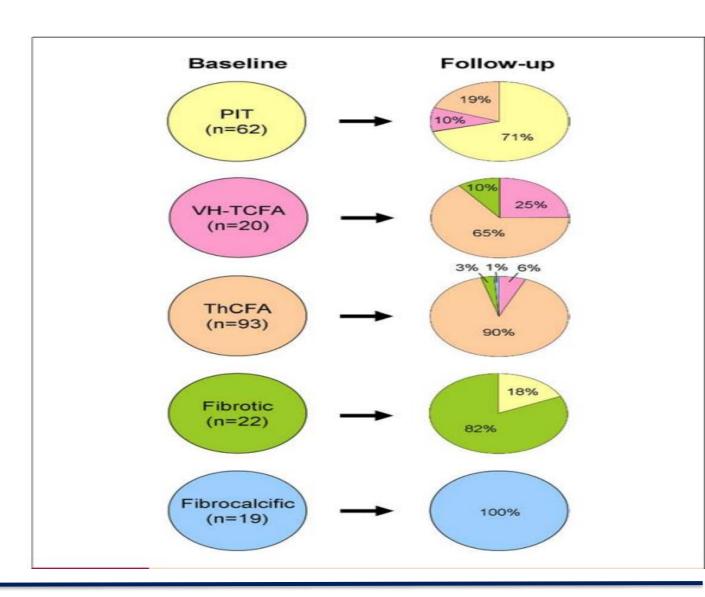
TCFA: Thin Cap Fibro Atheroma



Primary Outcome: Prevalence of TCFA (per

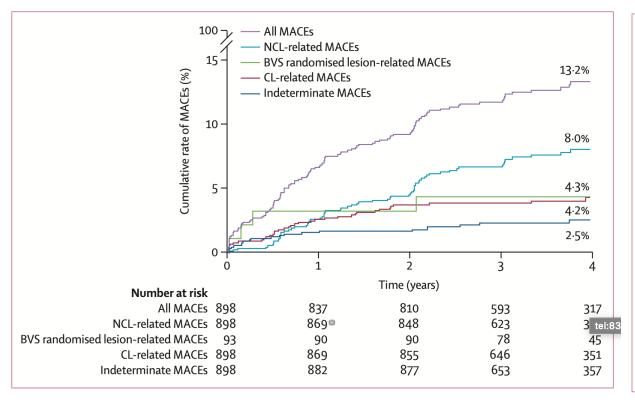
Obstructive non-culprit lesions are most likely to be vulnerable

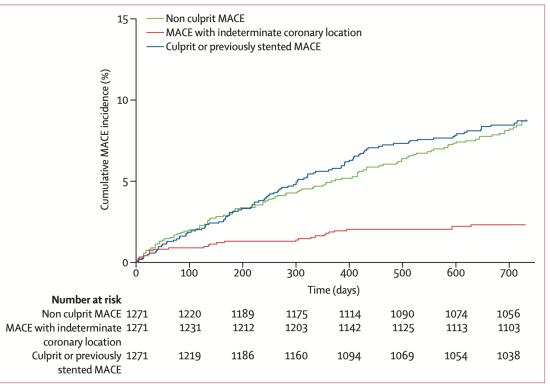
TCFA: Thin Cap Fibro Atheroma



Non-Culprit Lesions are Dynamic: Retrospective VH-IVUS Study

Serial (baseline and 12-month follow-up) VH-IVUS examined 216 nonculprit lesions (plaque burden 40%) in 99 patients





Prospective multivessel imaging studies needed to evaluate Culprit vs Non-culprit vs indeterminate MACE

Prospect 2 N=898

Lipid Rich Plaque Study N=1271

Erlinge et al. Lancet. 2021;397:985

Waksman et al. Lancet. 2019;394:1629-37.

No similar study conducted with OCT

COMPLETE-2 Study Design

STEMI or NSTEMI with Multivessel Coronary Artery Disease

At least one additional non-culprit lesion ≥2.5 mm diameter and ≥50% stenosis

N=5100

Randomization

Stratified by STEMI or NSTEMI, single sitting or staged NCL PCI

Physiology-Guided NCL PCI

Routine PCI of all physiological positive lesions with the goal of complete revascularization n=2550

Angiography-Guided NCL PCI

Routine PCI of all angiographical suitable lesions with the goal of complete revascularization

n=2550

OCT Substudy (Optional)

Primary Objective: Whether vulnerable plaque (lipid-rich plaque and thin cap fibroatheroma) as identified by OCT imaging predicts CV death, new MI, TLR, or unstable angina (related to a non-stented lesion)

N=1510

Follow-up twice yearly Median approx. 3.5 Years

COMPLETE-2 OCT: A large-scale intracoronary imaging study

Primary Objective: To determine, in patients with STEMI or NSTEMI and multivessel CAD, whether vulnerable plaque, as identified by OCT imaging, predicts major cardiovascular events

Design: Large-scale, prospective, observational, multicentre, imaging study of patients with STEMI or NSTEMI and multivessel CAD

Sample Size: 1510 patients

Primary Outcome: Composite of CV death, new MI, unstable angina, or target lesion revascularization (TLR) related to a non-stented lesion at the *patient*

level

Recommended workflow for stent placement for OCT substudy patients

Pre-PCI OCT | Strategize

Post-PCI OCT | Optimize

Morphology

Search for High Calcium¹

Criteria:

>180 degrees, and >0.5 mm thickness, and >5 mm in length

Length

Select Landing Zones
Based on Healthy Tissue/
EEL Visualization²

Placelanding zones in healthy tissue (i.e. EEL visualization)

Note: In the absence of EEL to represent healthy tissue find the largest lumen to avoid areas of TCFA or lipid pools so as to not landy our stent edge in these high-risk ar eas?

Diameter

Measure Vessel, Stent, Balloon Diameters

U se distal reference measurement stoselect stent diameter

Use distal reference measurement for distal balloons or proximal reference measurements for proximal balloons

Medial Dissection

Address Significant Dissection³

Criteria:

Dissection penetrates medial layer, and is greater than 1 quadrant arc

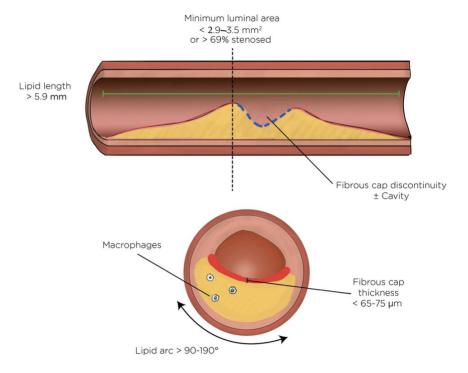
Apposition

Address Gross Malapposition

Criteria:

Malapposition indicator shows longer than 3 mm⁴ of significant (≥0.3 mm from wall⁵) apposition

Xpansion


Confirm Expansion3,6

Criteria:

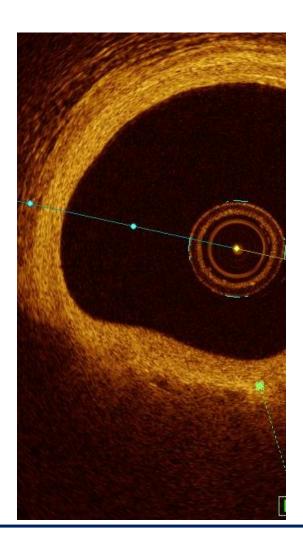
≥80% accept ablie, ≥90% exipansion is optimal

COMPLETE-2 OCT

Study	Year	No. patients	Study design	I
lannaccone et al ⁵⁸	2018	209	Retrospective, multicenter	
Xing et al ⁶¹	2017	1,474	Retrospective multicenter	
Araki et al ⁵⁹	2020	248	Retrospective, single center	
Prati et al ⁵	2020	1,003	Prospective, multicenter	
Kubo et al ⁶⁰	2021	1,378	Retrospective single center	

COMPLETE 2 OCT study will be the first study to assess event prediction based on OCT plaque morphology using a **prospective multivessel imaging protocol**.

Patients with STEMI/NSTEMI and multi-vessel disease constitute a high risk population and frequently have evidence TCFA - a key target population for vulnerable plaque imaging studies.



COMPLETE-2 OCT: Al based analysis

The COMPLETE OCT study will help define OCT parameters associated with adverse clinical events that occur despite complete revascularization

Patients with high risk plaques may merit specific therapeutic options to achieve more complete plaque stabilization that is possible with current therapy

- 1. Lipid-Rich Plaque and Lipid Arc
- 2. Thin Cap Fibroatheroma (TCFA)
- 3. Minimum lumen area (MLA)
- 4. Layered/Healed Plaque
- + Al based analysis

