^{29*}**TCTAP2024**

Application of Al and Robotics for Cardiovascular Care

Young-Hak Kim, MD, PhD

Cardiology Division, Department of Information Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea

Disclosure

- Young-Hak Kim, MD, PhD
 - Co-founder & medical advisor of LN Robotics Corp.
 - Medical advisor of Medipixel Corp.
 - Founder & CEO of InMed Data Corp.

• Interventional robotics for coronary artery disease treatment

• Al for assistance of coronary intervention

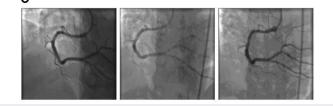


• Interventional robotics for coronary artery disease treatment

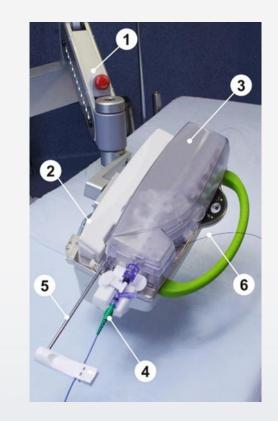
• Al for assistance of coronary intervention

CorPath 200 System (Corindus,Inc., Natick, Massachusetts) : US FDA approval in 2012

- Corindus Corp. was acquired by Siemens in 2019
- The second generation system was released.
- Siemens discontinued the business for cardiovascular intervention in 2023, but it is still used for neurovascular treatment


JACC: CARDIOVASCULAR INTERVENTIONS © 2011 BY THE AMERICAN COLLEGE OF CARDIOLOGY FOUNDATION PUBLISHED BY ELSEVIER INC. VOL. 4, NO. 4, 2011 ISSN 1936-8798/\$36.00 DOI: 10.1016/j.jcin.2010.12.007

First-in-Human Evaluation of a Novel Robotic-Assisted Coronary Angioplasty


Juan F. Granada, MD,*‡ Juan A. Delgado, MD,† Maria Paola Uribe, M Andres Fernandez, MD,‡ Guillermo Blanco, MD,‡ Martin B. Leon, MI Giora Weisz, MD§

New York, New York; and Envigado, Colombia

²¹TCTAP2024

Meta-analysis

• Clinical Success of Robotic vs. Manual PCI

	R-PCI		M-PCI			Risk Ratio	Risk Ratio		
Study or Subgroup	Events	Total	Events	Total	Weight	IV, Random, 95% CI	IV, Random, 95% CI		
Beyar 2006	18	18	20	20	2.8%	1.00 [0.91, 1.10]			
Hirai 2020	44	49	40	46	1.3%	1.03 [0.89, 1.20]			
Kagiyama 2021	26	28	33	35	1.6%	0.98 [0.86, 1.12]			
Madder 2017a	45	45	278	291	17.8%	1.04 [1.00, 1.08]			
Mahmud 2017	107	108	224	226	57.3%	1.00 [0.98, 1.02]			
Smilowitz 2014	40	40	80	80	19.1%	1.00 [0.96, 1.04]			
Total (95% CI)		288		698	100.0%	1.01 [0.99, 1.02]	•		
Total events	280		675						
Heterogeneity: Tau ² =	= 0.00; Ch	i ² = 2.9							
Test for overall effect	Z = 0.76	(P = 0.4	15)				0.85 0.9 1 1.1 1.2 Favors R-PCI Favors Manual PC		
							Favois R-FOI Favois Ivialiual PC		

Meta-analysis

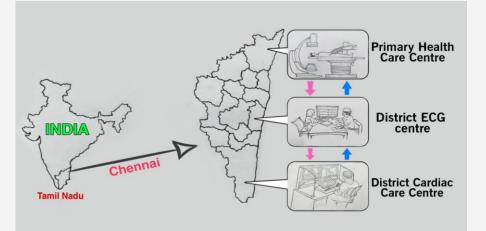
• Contrast Volume of Robotic vs. Manual PCI

	R-PCI			M-PCI				Mean Difference	Mean Difference	
Study or Subgroup	Mean	SD	Total	Mean	SD	Total	Weight	IV, Random, 95% Cl	IV, Random, 95% CI	
Hirai 2020	111	39	49	118	53	46	12.1%	-7.00 [-25.81, 11.81]		
Kagiyama 2021	93.2	44.5	30	107.8	43.4	77	12.3%	-14.60 [-33.24, 4.04]		
Madder 2017a	167	89	45	154.2	94.5	291	5.9%	12.80 [-15.38, 40.98]		
Mahmud 2017	183.4	78.7	108	202.5	74	226	13.4%	-19.10 [-36.80, -1.40]		
Patel 2020	133.3	52.1	310	153.3	52	686	45.4%	-20.00 [-26.98, -13.02]		
Smilowitz 2014	121	47	40	137	62	80	11.0%	-16.00 [-35.92, 3.92]		
Total (95% CI)			582			1406	100.0%	-15.27 [-22.37, -8.18]	•	
Heterogeneity: Tau ² = 16.21; Chi ² = 6.21, df = 5 (P = 0.29); l ² = 20% -100 -50 0 50										
Test for overall effect: Z = 4.22 (P < 0.0001)									Favors R-PCI Favors Manual PCI	

Meta-analysis

• Fluoroscopy Time of Robotic vs. Manual PCI

	F	R-PCI		N	I-PCI			Mean Difference	Mean Difference
Study or Subgroup	Mean	SD	Total	Mean	SD	Total	Weight	IV, Random, 95% Cl	IV, Random, 95% CI
Beyar 2006	8.8	4.8	18	9.1	3.5	20	12.1%	-0.30 [-3.00, 2.40]	+
Hirai 2020	37.9	17.9	49	48.6	17.1	46	2.3%	-10.70 [-17.74, -3.66]	
Kagiyama 2021	27.5	18.9	30	31.5	18.9	77	1.8%	-4.00 [-11.97, 3.97]	
Madder 2017a	11.7	6.8	45	12.4	9.4	291	15.4%	-0.70 [-2.96, 1.56]	+
Mahmud 2017	18.2	10.4	108	19.2	11.4	226	13.8%	-1.00 [-3.46, 1.46]	-
Patel 2020	5.9	4.4	310	6.7	4	686	38.7%	-0.80 [-1.37, -0.23]	-
Smilowitz 2014	10.1	4.7	40	12.3	7.6	80	15.8%	-2.20 [-4.41, 0.01]	*
Total (95% CI)			600			1426	100.0%	-1.26 [-2.37, -0.16]	•
Heterogeneity: Tau ² =	= 0.74; C	hi²=9	.69, df=	= 6 (P =	0.14);	I ² = 389	%		-50 -25 0 25 50
Test for overall effect	Z = 2.24	(P = (0.03)						Favors R-PCI Favors Manual PC


Remote Tele-Robotic PCI

20 miles away

- CorPath GRX for 5 patients
- LAN/MAN/WAN connectivity

Robot assisted PCI via telecommunication

"Remote tele-R-PCI may be viable through the telerobotic platform for STEMI patients in rural areas and during pandemic scenarios."

^{29*} TCTAP2024

Thirumurugan E, et al. Indian Heart Journal 2023 (e-pub)

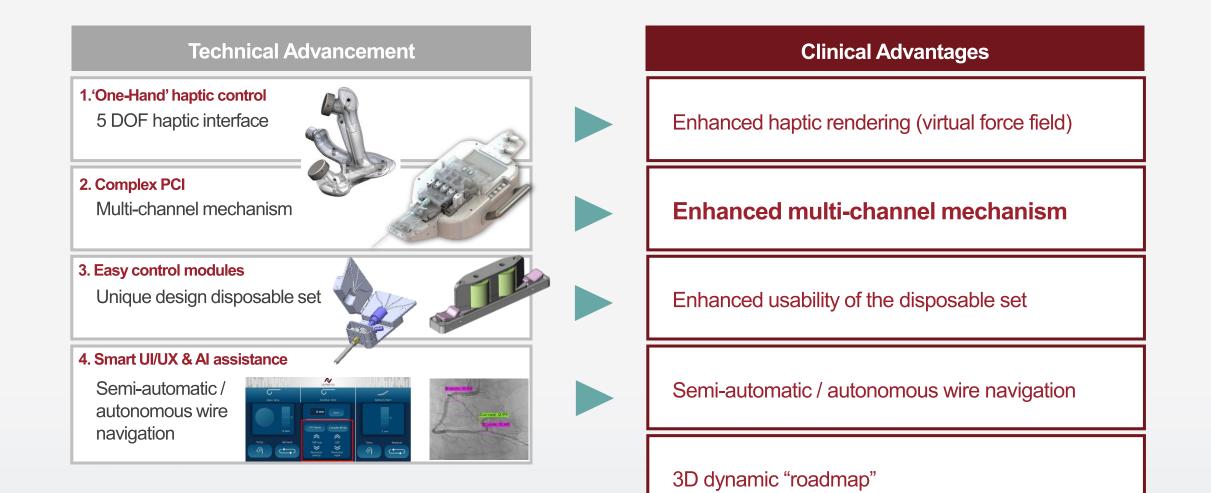
Pro & Con of Corpath


- Pro
 - Reduction in radiation exposure and orthopedic injuries: operator benefit
 - Potential reduction in radiation exposure and contrast volume: patient benefit
 - Possibility of tele-PCI

- Con
 - Incompatibility with intravascular imaging devices
 - Inability to manipulate multiple guidewires and stents
 - Lack of clinical evidences

Robotic Angioplasty Devices

CVRF


AVIAR 2 for Commercial Use

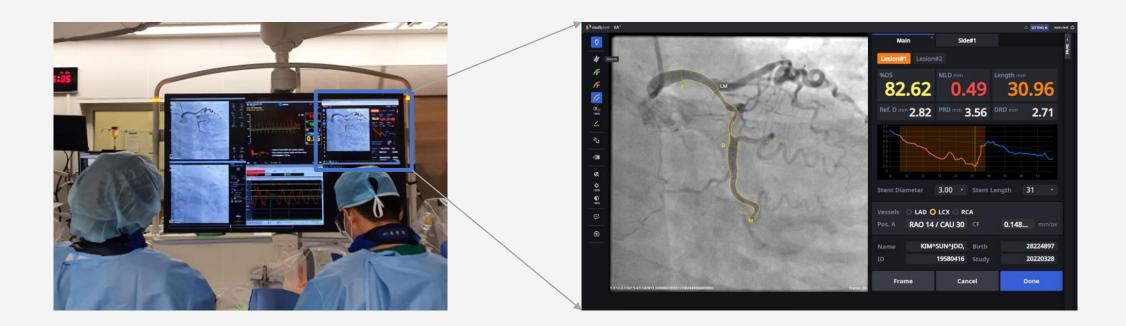
Key Advantages of AVIAR 2

TCTAP2024

Procedure of AVIAR 2

A Initial Registry for Safety & Feasibility Assessment

- Two cardiac centers included **20** cases of stable patients receiving coronary stenting with R-PCI using AVIAR 2.0 by Dr. Lee SW in Asan Medical Center & Dr. Lee JH, MD in Eunpyeong St. Mary's Hospital
- No crossover case from R-PCI to manual PCI
- 100% clinical success rate
- Significant reduction of radiation time
- Plan of next clinical studies to assess the efficacy of AVIAR 2.0 R-PCI for complex lesion PCI


• Interventional robotics for coronary artery disease treatment

Al for assistance of coronary intervention

AI-QCA for PCI Assistance: MPXA by MEDIPIXEL Corp. in Korea

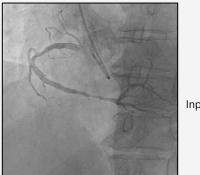
- Provides detailed information on the target lesion in real-time
- Supports physicians' decision-making for PCI
- Provides more accuracy and consistency than visual estimation

TCTAP2024

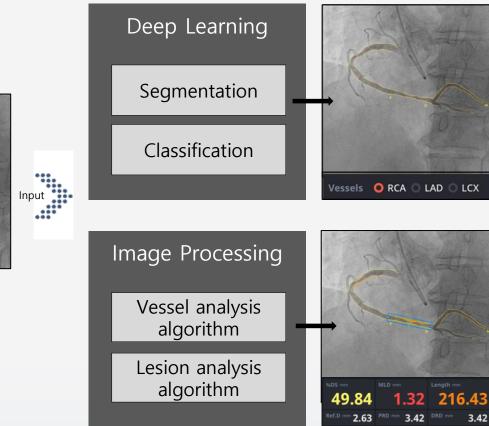
What AI-QCA can do

Lesion information provided

- %DS of the lesion
- Lesion length
- MLD, etc.

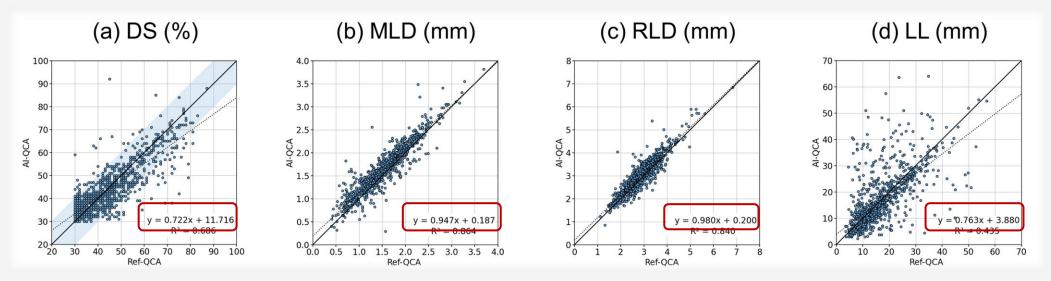

Scope of the analysis

- Multi-lesions
- Multi-vessels
 - Main and Side branches


AI-QCA allows you to obtain all necessary QCA information within a couple of seconds.

Well trained AI Engine

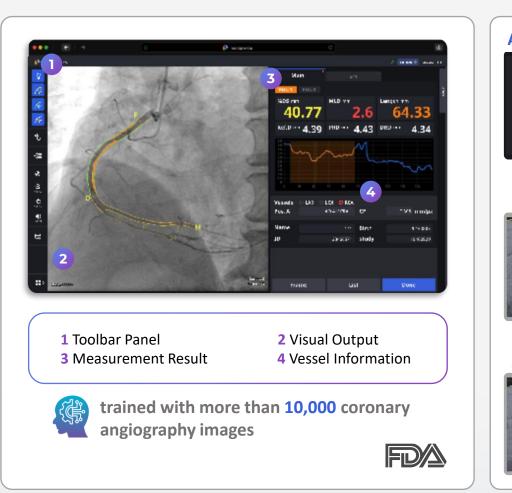
X-ray Angiography (DICOM)

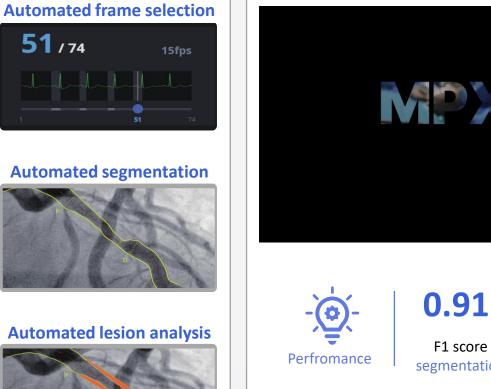

- DL-based segmentation
- AI trained with about 10,000 patients' data
 - Accuracy increases with more data
 - Data include patients with complex lesions
- Dataset used for learning reflect the real patient pool

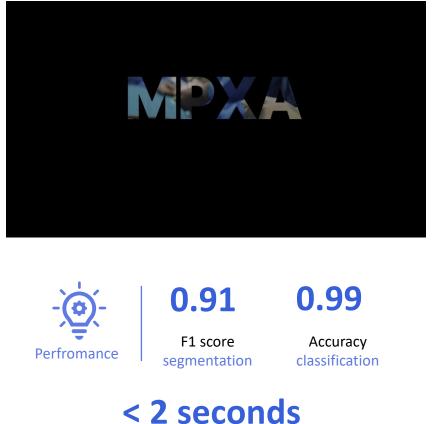
Accuracy Validation btw AI- vs. Manual-QCA

- MPXA-1000 AI-QCA analysis :
- Retrospective analysis of 676 coronary angiography images at two major hospitals in South Korea (Asan, Sejong Hospital)
- AI-QCA vs manual QCA comparison

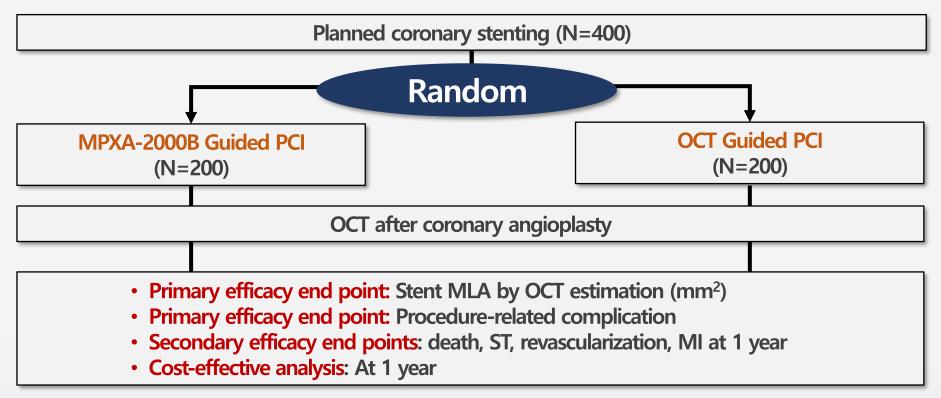
Scatter plots of AI-QCA vs. Ref-QCA (upper row) and the corresponding Bland-Altman plots (bottom row). Each dot indicates a lesion.


- AI-QCA lesion detection sensitivity: 89.2%
- Strong correlations for DS, MLD, RLD, LL


YI Kim, et al. Int J Cardiol. 2024 Mar 11:131945.

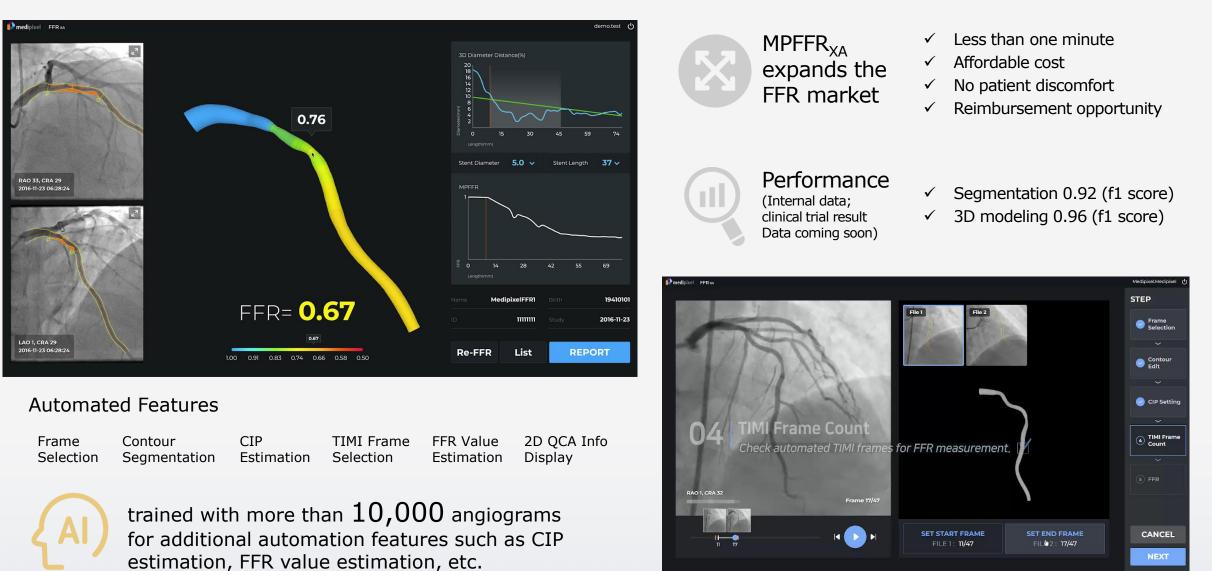

²⁰¹ TCTAP2024

How it works



FLASH Trial: AI- vs. OCT-guided PCI

Fully **A**utomated Quantitative Enrollment was finished! Co**H**erence Tomography Guidance


Procedure-related complication: dissection, perforation, thrombosis, acute closure

PI: Jung-Min Ahn, MD, PhD

Upcoming Program of AI-FFR: MPFFR_{XA}

Synergistic Role of AI-QCA and AI-FFR

Both morphological and functional information at a time

AI-QCA with MPXA

Sharing core technologies

Sharing core technologies

- Frame selection
- Contour segmentation
- Calibration
- Access control ...

AI-FFR by $MPFFR_{XA}$

Summary / Conclusion

Robotic angioplasty

- It reduces occupational hazard of radiation exposure and orthopedic injuries of operators.
- Procedural outcomes are comparable as reference to the standard manual PCI.
- Potential benefit for complex PCI with a new PCI robotic system will be tested by future clinical studies.

AI for interventional cardiology

- Al may be used to better predict possible adverse events and outcomes of patients.
- Al-assisted real time QCA can assist operators to determine coronary lesion morphology and select appropriate devices.
- FLASH clinical trial will present the efficacy of AI-QCA-guided PCI as compared with OCT-guided PCI.

