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Editorials

Application of Statistics to Medicine

A natural starting point for a history of biostatistical thought in the past millennium is the work of
Leonardo Fibonacci (c. 1170~ after 1240), an Italian mathematician of the Middle Ages. By introducing
Indian and Arabic mathematics and numbering to Europe in 1202, he freed Western thought from the
limitations of the Roman-numeral system. This advance laid the foundation for modern computation
and bookkeeping. Probability theory emerged only in the 16th and 17th centuries, when Pierre de
Fermat (1601-1665) and Blaise Pascal (1623-1662) developed basic probabilistic calculations to analyze
games of chance. Ideas of relative frequency were first applied to mortality statistics in 17th-century
London at the time of the plague. John Graunt (1620-1674) introduced the notion of inference from a
sample to an underlying population and described calculations of life expectancy that launched the

insurance industry in the 17th and 18th centuries.

The German mathematician Karl Friedrich Gauss (1777-1855) played a central part in the development
of modern statistical reasoning. His method of least-squares analysis, developed around 1794, underlies
much of modern regression analysis. Thomas Bayes (1702-1761), the 18th-century English theologian
and mathematician, was the first to show how probability can be used in inductive reasoning.

One of the earliest clinical trials took place in 1747, when James Lind treated 12 scorbutic ship
passengers with cider, an elixir of vitriol, vinegar, sea water, oranges and lemons, or an electuary
recommended by the ship's surgeon. The success of the citrus-containing treatment eventually led the
British Admiralty to mandate the provision of lime juice to all sailors, thereby eliminating scurvy from
the navy. The origin of modern epidemiology is often traced to 1854, when John Snow demonstrated
the transmission of cholera from contaminated water by analyzing disease rates among citizens served
by the Broad Street Pump in London's Golden Square. He arrested the further spread of the disease by

removing the pump handle from the polluted well.

Biostatistical reasoning developed rapidly in Great Britain in the late 19th and early 20th centuries. Sir
Ronald Fisher (1890-1962), the most impeortant figure in modern statistics, developed the analysis of
variance and multivariate analysis. He also introduced the principle of randomization as a method for
avoiding bias in experimental studies. In the United States, Jerzy Neyman, a Russian immigrant,
developed the theories of estimation and testing that shaped contemporary biostatistical practice.

A landmark of quantitative observational research as a tool for exploring the determinants of disease
was Sir Richard Doll's study of smoking among British physicians. Randomized clinical trials emerged
in England in the 1950s and were adopted by the National Institutes of Health in the United States in
the early 1960s; there followed an explosion of clinical trials of treatment for cancer, heart disease,
diabetes, and other diseases. Biostatistical methods expanded rapidly during this period. Sir David
Cox's 1972 paper on proportional-hazards regression ignited the fields of survival analysis and
semiparametric inference (using partial specification of the probability distribution of the outcomes
under investigation). Rapid improvements in computer support were essential to the growing role of
empirical investigation and statistical inference.



Are machine learning models really superior to
traditional approaches?

Table 4. Discrimination and Calibration of the Models for Predicting 10-Year Risk of Developing Heart Failure in the Validation

Cohorts Among Black Adults and White Adults

ARIC MESA/DHS
GND %2 Delong test GND »? Delong test
C-index (95% Cls) (P value) (P value)” C-index (95% Cls) (P value) (P value)*
Black adults
ML risk score 0.80 (0.75-0.84) 10.1 (0.26) Ref 0.83 (0.77-0.87) 11.7 (0.17) Ref
ARIC-HF risk score 0.77 (0.73-0.80) 8.9 (0.39) <0.001 0.80 (0.76-0.84) 29.8 (<0.001) 0.01
PCP-HF risk score 0.73 (0.69-0.77) 14.4 (0.07) <0.001 0.75 (0.71-0.79) 16.1 (0.04) <0.001
MESA-HF risk score 0.72 (0.67-0.75) 6.9 (0.55) <0.001 0.78 (0.74-0.82) 6.0 (0.54) 0.006
White adults
ML risk score N/A 0.82 (0.78-0.86) 9.9 (0.27) Ref
ARIC-HF risk score 0.79 (0.76-0.81) 25.5 (0.001) 0.008
PCP-HF risk score 0.75 (0.71-0.79) 19.1 (0.01) <0.001
MESA-HF risk score 0.80 (0.76-0.83) 8.33 (0.40) 0.044

ARIC indicates Atherosclerosis Risk in Communities; DHS, Dallas Heart Study; GND, Greenwood-Nam-D'Agostino; HF, heart failure; JHS, Jackson Heart Study;
MESA, Multi-Ethnic Study of Atherosclerosis; ML, machine learning; N/A, not applicable; PCP-HF, Pooled Cohort Equations-Heart Failure; and Ref, reference.
“The Delong test of C-index compared with the ML risk score model.
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Development and Validation of Machine
Learning—Based Race-Specific Models to Predict
10-Year Risk of Heart Failure

A Multicohort Analysis

Matthew W. Segar}, MD, MS; Byron C. Jaeger ), PhD; Kershaw V. Patel®=, MD; Vijay Nambi=*, MD, PhD;

Chiadi E. Ndumele, MD; Adolfo Correa™, MD; Javed Butler(, MD, MPH, MBA; Alvin Chandra®®, MD; Colby Ayers, MS;
Shreya Rao, MD, MPH; Alana A. Lewis, MD; Laura M. Raffield">, PhD; Carlos J. Rodriguez'®, MD, MPH;

Erin D. Michos(, MD, MHS; Christie M. Ballantyne', MD; Michael E. Hall>), MD; Robert J. Mentz(), MD;

James A. de Lemos ™, MD; Ambarish Pandey ™, MD, MSCS



Inadequacy of existing clinical prediction W) coms
models for predicting mortality after
transcatheter aortic valve implantation
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Glen P. Martin, MSc, ® Matthew Sperrin, PhD, * Peter F. Ludman, MA, MD, FRCP, FESC, ® Mark A. de Belder, MA, MD, FRCP, ©
Chris P. Gale, PhD, FRCP, FESC, ! William D. Toff, MD, FRCP, FESC, “* Neil E. Moat, MBBS, MS, ® Uday Trivedi, MBBS, b
Iain Buchan, MD, FFPH, * and Mamas A. Mamas, MA, DPhil, FRCP ™ Manchester, Birmingham, Middlesbrough, Leeds
Institute of Cardiovascular and Metabolic Medicine, University of Leeds; Leicester, London, Brighton and Sussex
Universily Hospilals, Brighlon, and Sloke-on-Trenl, Uniled Kingdom

Table Ill. Calibration, discrimination and Brier score for 30-day mortality in the whole cohort

Risk model Calibrafion intercept (95% CI)” Calibration slope (95% Cl) AUC (95% C) Brier score
LES _1.75 (186, —1.64) 0.35(0.23, 0.48) 0.57 (0.54, 0.61) 0093
ESiI ~0.47 (-0.59, —0.36) 0.40 (0.28, 0.53) 0.59 (0.55, 0.62) 0.054
STS 0.07 (-0.04, 0.18) 056 (0.42, 0.71) 0.60 (0.57, 0.63) 0.051
German AV —0.36 [-0.47, —0.25) 0.44(0.32, 0.57) 0.59 (0.56, 0.62) 0053
FRANCE-2 0.60 (-0.71, —0.49) 0.69 (0.53, 0.86) 0.62 (0.59, 0.65) 0053
OBSERVANT ~0.31 (-0.42, —0.20) 0.39 (0.25, 0.53) 0.57 (0.54, 0.60) 0052
ACC TAVI 0.04 (-0.07, 0.15) 0.67 (0.52, 0.82) 0.64 (0.60, 0.67) 0.051

*The reported calibration intercept is that estimated assuming a slope of one; sofi shactory calibration would accur if the 25% confidence intervals for the calibration intercept and slope

span zero and one respedively. Bold items indicate that the 95% Cl spans the corresponding reference value.
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Simon R Redwood,” Jonathan N Townend,” Mark Gunnihg,5 Neil E Moat,®
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Table 3 Variables and coefficients included in the final multivariable

UK-TAVI CPM
Variable* Coefficient (SE) OR (95%Cl)
Intercept —3.6119 (0.1995) NA

Mean-centred age
Female
Mean-centred BMI

Mean-centred BMI squared
Glomerular filtration rate per 5 units

increase
Pulmonary disease

Extracardiac arteriopathy
Sinus preoperative heart rhythm

Prior BAV

Critical preoperative status

Poor mobility

KATZ (per point drop from 6 points)
PA systolic pressure =60 mm Hg

Non-elective procedure

Non-transfemoral access

0.0115 (0.0085)
0.1393 (0.1174)
—0.0257 (0.0119)
0.0011 (0.0007)
—0.0342 (0.0139)

0.2140 (0.1266)
0.1912 (0.1348)
—0.1798 (0.1193)
0.2469 (0.1633)
0.5914 (0.2770)
0.6302 (0.2052)
0.2362 (0.0689)
0.1867 (0.1583)
0.3719 (0.1554)
0.5436 (0.1268)

1.012 (0.995 to 1.028)
1.150 (0.913 to 1.447)
0.975 (0.952 to 0.998)
1.001 (1.000 to 1.002)
0.966 (0.940 to 0.993)

1.239 (0.966 to 1.588)
1.211 (0.930 to 1.577)
0.835 (0.661 to 1.056)
1.280 (0.930 to0 1.763)
1.807 (1.050 to 3.109)
1.878 (1.256 to 2.808)
1.267 (1.107 to 1.450)
1.205 (0.884 to0 1.644)
1.451 (1.070 to 1.967)
1.722 (1.343 t0 2.208)

Table 4 Performance measures before (apparent) and after
bootstrap-corrected optimism within the 2013-2014 data (n=2969)

Calibration intercept Calibration slope

validation  (95%(Cl) (95% CI) AUC (95% Cl)
Apparent  0.00 (-0.18t00.18)  1.00(0.76t0 1.24)  0.70 (0.65 to 0.75)
Internal*  0.02(-0.17t00.20)  0.79 (0.55t0 1.03)  0.66 (0.61 to 0.71)

*Variable definitions are given in online supplementary table 1.
BAV, balloon aortic valvuloplasty; BMI, body mass index; CPM, clinical prediction
model; NA, not applicable; PA, pulmonary artery; TAVI, transcatheter aortic valve

implantation.

*Estimated as the apparent performance minus optimism, where optimism was
obtained through bootstrap resampling.
AUC, area under the curve.
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Comparison of Machine Learning Methods With National Keele Cardiovascular
Cardiovascular Data Registry Models for Prediction of Risk Research GI’OLl‘p
of Bleeding After Percutaneous Coronary Intervention

Bobak J. Mortazavi, PhD: Emily M. Bucholz, MD, PhD, MPH; Nihar R. Desal, MD, MPH;: Chenxi Huang, PhD; Jeptha P. Curtis, MD; Frederick A. Masoudi, MD, MSPH;
Richard E. Shaw, MA, PhD; Sahand N. Negahban, PhD; Harlan M. Krumholz, MD, SM

E Decile-based calibration plots

0.25-
Table 3. C Statistics of 5-Fold Cross-validation Results for the Existing Simplified Risk Score Existing foll model,
and the Blended Model 0209 @ Blended model
Timing Variable Set Mean (95% Cl) C Statistic 2 0154
Existing simplified Existing simplified risk score 0.77(0.77-0.77) E
T Existing simplified risk score with lasso regularization 0.77(0.77-0.77) "'é’ 0104
Existing simplified risk score with gradient descent boosting 0.81 (0.80-0.81) 0.05 ” e
Blended model Existing full model 0.78 (0.78-0.78) o7
Existing full model with lasso regularization 0.78 (0.78-0.78) 01 / , . . , ,
Existing full model with gradient descent boosting 0.78 (0.78-0.78) ’ o U:rgdicted RatnEJs " o
Blended model with lasso regularization 0.78 (0.78-0.78)
Blended model with gradient descent boosting 0.82 (0.82-0.82) Continuous calibration plots
1.00+

Model identifies additional 168 bleeding cases | [ g
per 100 000 PCI cases.

0.504

Observed Rate

ML blended model -59 variables

0=

0 0.25 0.50 0.75 1.00
Predicted Rate
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Fig. 1.

71 studies included

PRISMA flowchart. PRISMA, preferred reporting items for systematic reviews and meta-analysis.

Overall
—Any ML vs LR
—Treevs LR
- RFvs LR
802 studies irrelevant -SVMvs LR
— ANN vs LR
— Other ML vs LR
Low risk of blas
—Any ML vs LR
—Treevs LR
- RFvs LR
54 studies excluded _SVMvs LR
14 - Purely risk factor study —ANNvs LR
10 - No intention to compare ML vs LR — Other ML vs LR
8 - Methodological paper on a novel method
7 - No predictions for patients/humans
6- N9 full_texta.\railahle ngh risk of bias
Aol — Any ML vs LR
2 - Not a hinary outcome —Treevs LR
1 - Validation study _ HF Vs LH
- 3VM vs LR
— ANN vs LR
— Other ML vs LR

DIff logIt(AUC)
(95% CI)

0.25 (0.12;0.38)
0.00 (~0.15;0.15)
0.33 (0.18;0.49)
0.24 (0.10;0.39)
0.47 (0.32:0.62)
0.22 (0.07;0.37)

0.00 (~0.18;0.18)
—0.34 (-0.65;-0.04)
0.06 (—0.15;0.26)
0.03 (-0.20;0.26)
-0.12 (-0.35:0.12)
—0.08 (-0.30;0.12)

0.34 (0.20;0.47)
0.05 (~0.10;0.20)
0.41 {0.22;0.60)
0.33 (0.19;0.48)
0.71 (0.55;0.88)
0.31 (0.15;0.47)

282
42
b9
43
52
BE

145
16
39
17
27
46

137
26
20
26
25
40
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Key findings

e Applied studies comparing clinical prediction
models based on logistic regression and machine
learning algorithms suffered from poor methodol-
ogy and reporting, in particular, with respect to
the validation procedure.

| Predicted 1R
Observed [

e The studies rarely assessed whether risk predic-
tions are reliable (calibration), but the area under
the receiver operating characteristic curve (AUC)
was almost always provided.

e The AUC of logistic regression and machine
learning models for clinical risk prediction were
similar when comparisons were at low risk of bias;
machine learning (ML) performance was higher in
comparisons that were at high risk of bias.

Predicted or Observed Event Rate

1 2 3 45 6 7 8 9 10 1 2 3 45 6 7 8 9 10
Decile of Predicted Risk
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Stroke Risk

Calculates stroke risk for patients with atrial fibrillation, possibly better than the

When to Use v Pearls/Pitfalls + Why Use
Age <65 0 65-74 +1 275 +2
Sex Female +1 Male 0
CHE history “ Yes +1
Hypertension history “ Yes +1
Stroke/TIA/thromboembolism history “ Yeos 42
Vascular disease history (prior Ml, peripheral “ Yes +1
artery disease, or aortic plaque)
Diabetes history “ Yes +1
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International Journal of Cardiology

e 101 features used in model

ELSEVIER journal homepage: www .elsevier.com/locatefijcard

« ICD-10 based codes
Prediction of clinical outcomes after percutaneous coronary intervention: ity
Machine-learning analysis of the National Inpatient Sample
) bt N b . e b National Inpatient Sample Stratified 5-fold group cross-validation
Akhmetzhan Galimzhanov ™ , Andrija Matetic *-°, Erhan Tenekecioglu *-°, Mamas A. Mamas ) with grid search of hyperparameters
* Department of Propedeutics of Internal Disease, Semey Medical University, Semey, Kasakhstan
* Keele Cardiovascular Research Group, Keele University, Keele, UK 8 . .
© Department of Cardiology, University Hospial of Spli, Splic 21000, Croatia @ 2 Five ML algorithms
‘WWWMMMMMHMMMUWMW 6 oq .
4 1) Naive Bayes
of gy, Th Erasmais MC, Erasmus University, Rotterdam, the Netherlands ” - & \o S .
1,934,505 available % .g ® 2) Logistic refression
PCI hospitalizations o B T 3) Linear SVM
ARTICLEINFO ABSTRACT n
9 £ 4) Ranfom Forest
Keywords: Background: This study simed to develop a multiclass machine-leaming (ML) model to predict allcause mor- Exclided: ; 5) XGBoost
Machine leaming _ tality, ischemic and hemorrhagie events in unselected hospitalized patients und P coronary N )| £ A metric: multi-class
Per : i (PCI), Age <18 y (n=450) o
Thrombosis Methods: This retrospective study included 1,815,595 unsclected weighted hospitalizations undergoing PCI from - Pregnant (n=310) b= OVR AUC
Bleeding the National Inpatient Sample (2016-2019). Five most common ML algorithme (logistic regreasion, support - missing values (n=118,050) | -5 % —~ —~
Precision medicine wvector machine (SVM), naive Bayes, random forest (RF), andextren_xgrndlmlh:toshng()(ﬁnoo&t])wcmmd A dup“cates (n=100) Q @ g 2
and tested with 101 input features. The study endpoints were diff jone of all mortality, " g':t\'
izchemie cerebrovascular events (CVE) and major bleeding. An area under the curve [AUC) with 95% confidence g og g g
interval (95% CI) was selected az a performance metrie. o = o -
Resultz: The study population wae eplit to a training cohert of 1,186,880 PCI discharges, validation echort (for Flnally 1 815,595 PCI E T’; é |‘[: " "/ ‘p;}:‘g:?::?géa:gg 0.86 (0.85-0.87)
calibration) of 296,725 hoepitalizations and a test cohort of 331,990 PCI discharges. A total of 98,180 (5.4%) BRI h 5 = == S | 1 F~ -
hospital entries included study outs Logistic 1 SVM, naive Bayes, and RF model demonstrated hOSpIta|lzatI0ns and - _'g: & Reliability Diagram
AUC: of 0.83 (95% Cl 0.82-0.84), 0.84 (95% Cl 0.83-0.86), 0.8]1 (95% Cl 0.80-0.52), and 0.83 (95% CI 361 featu res E E === perfect Calibration
0.81-0.84), retrospectively. The XGBoost classifier performed the best with an AUC of 0.86 (95% CI 0.85-0.87) 7 3 o =
with excellent calibration. We then built a web-based application that provides predictions based on the XGBoost =
model. . 0 ~
Gonclusion: We derived the multi-task XGBoost classificr based on 101 features to predict different combinations Study endpoints - | = S
of all-cause death, izchemic CVE and major bleeding. Such models may be useful in benchmarking and sk Combinations of: a (o)
prediction using routinely collected administrative data. n 3
—— - * all-cause death 20 .
X i - o m onfidence
ischemic CVE =
s % Il i g
* major bleeding & The best model was the XGBoost classifier with the

n= 98,180 test AUC = 0.86 (95% CI 0.85-0.87)



~
i Keele Cardiovascular
Algorithms not transparent (/Research Group

Input Output




The NEW ENGLAND JOURNAL of MEDICINE
“ REVIEW ARTICLE ” \
o Keele Cardiovascular
Jeffrey M. Drazen, M.D., Editor, Isaac S. Kohane, M.D., Ph.D., Guest Editor,

and Tze-Yun Leong, Ph.D., Guest Editor ResearCh Gro up

Where Medical Statistics Meets Artificial
Intelligence

David J. Hunter, M.B., B.S., and Christopher Holmes, Ph.D.

A Statistical Model

Statisticians, clinicians, ok iy 1 Age
epidemiologists : =
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Risk prediction
(e.g., risk of diabetes

= " and other coexisting
_ conditions)
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~ Hands-on selection of measurements or features
for prediction (|

Curation of transformation or standardization methods
Prespecified analysis strategy
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Where Medical Statistics Meets Artificial
Intelligence

David J. Hunter, M.B., B.S., and Christopher Holmes, Ph.D.

B Al Model

N\

Automated search and extraction of arbitrary, comﬁlex,
task-oriented features to develop prediction algorithm

Risk prediction

(e.g., risk of diabetes

and other coexisting
conditions)

i1

n

' ‘ Conclusions are harder
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utomated ; Y
Can handle very large, : D Opaque ) ! = l |
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1) Model bias (1.e. models selected to best represent majority and not
underrepresented groups)
2) Model variance (due to inadequate data from minorities)
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Can ML / Al prognosis models be Research Group
Implemented ? Do they change outcomes?




Computerised interpretation of fetal heart rate during @R® Keele Cardiovascular

CrossMark

labour (INFANT): a randomised controlled trial Research Group

The INFANT Collaborative Group* m

Decision support (n=23263) No decision support (n=23351) Adjusted risk ratio (Cl)

Composite neonatal primary outcome

Composite primary outcome™ 172 (0-7%) 171 (07 %) 1.01 (95% Cl 0-82-1.25)
Intrapartum stillbirthst 1(0) 2 (0) 0-50 (95% Cl 0-05-5-53)
Neonatal deaths up to 28 days after birth 6 (0) 4(0) 1.61(95% C1 0-42-5.33)
Moderate or severe neonatal encephalopathy 18 (0-1%) 21(01%) 0-86 (95% Cl 0-46-1-61)
(requiring cooling)

Admission to necnatal unit within 48 h of birth for 147 (0-6%) 144 (0-6%) 1.02 (95% Cl 0-31-1-29)

=48 h because of feeding difhculties, respiratory
iliness or symptoms, or encephalopathy and
evidence of compromise at birth
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* ML algorithms can be useful particularly for heterogenous
data sources ie EHR / Imaging / Biology

* ML has not been shown to be superior traditional approaches
for prognosis models

* Issues around lack of reproducibility, black box algorithms,
model instability, potentiate bias

* Lack of data around whether improve clinical outcomes
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