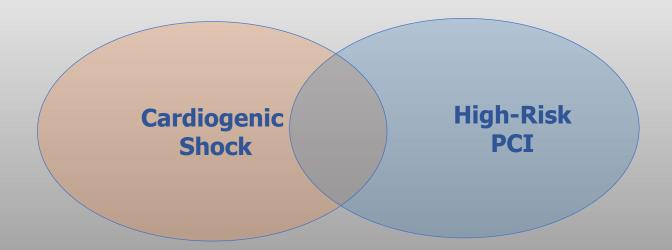


Pulsatile mechanical Circulatory Support

When & How

Prof. Dr. Nicolas M. Van Mieghem Professor and Director of Interventional Cardiology Thoraxcenter, Cardiovascular Institute, Erasmus University Medical Center

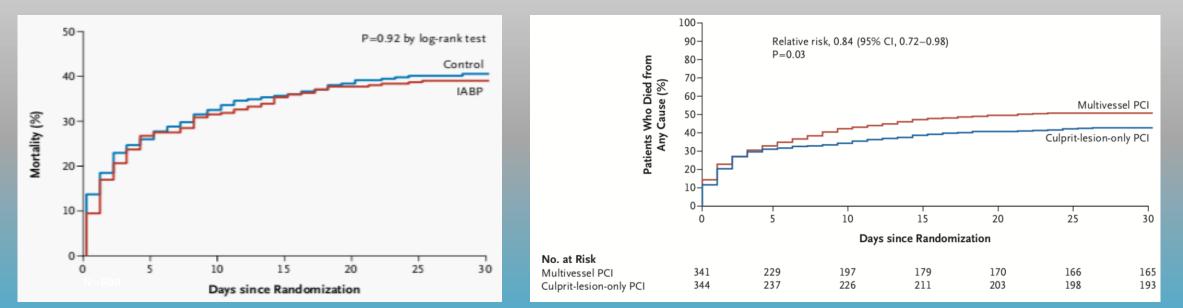
Rotterdam



My Conflict of Interest

- > Research Grant Support: Abbott, Boston Scientific, Edwards Lifesciences,
 - Medtronic, PulseCath BV, Daiichi Sankyo, Teleflex, Astra Zeneca, HeartFlow
- Advisory board: Abbott, Ancora, Boston Scientific, Medtronic, PulseCath BV,
 Daiichi Sankyo, Abiomed, JenaValve, Anteris, Bolt Medical, Siemens, Pie
 Medical, Luma Vision, FEops, Materialise

MCS is about Timing


- > Anticipate
- > Escalate
- > Choose wisely
- > Minimize inotropics/vasopressors

When IABP doesn't work...

IABP SHOCK II Trial

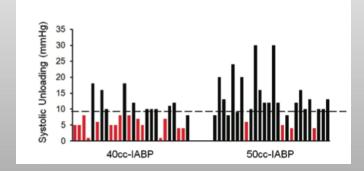
CULPRIT SHOCK Trial

Thiele et al. NEJM 2012;367:1287-96 Thiele et al. NEJM 2017;377:2419-32

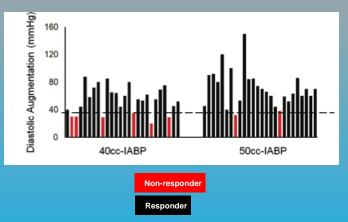
When IABP doesn't work...

IABP SHOCK II Trial

- OHCA > 40%
- \circ Catecholamines prior to randomization 90%
- Only 30cc IABP device

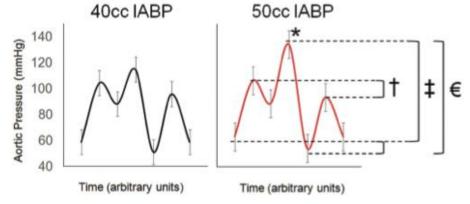

CULPRIT SHOCK Trial

- **OHCA > 50%**
- Catecholamines in 90%
- Any MCS in 28%
 - ✓ 27% IABP
 - ✓ 38% Impella
 - ✓ ECLS (ECMO) 38%

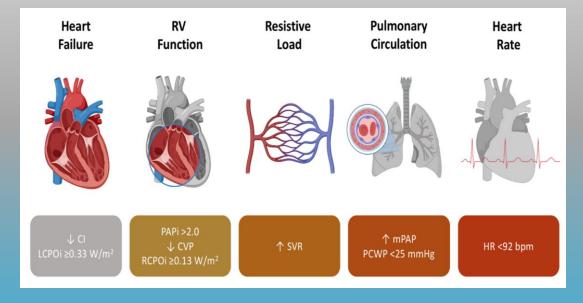


IABP Size Matters

Responders = Systolic pressure $\mathfrak{l} > 10$ mmHg



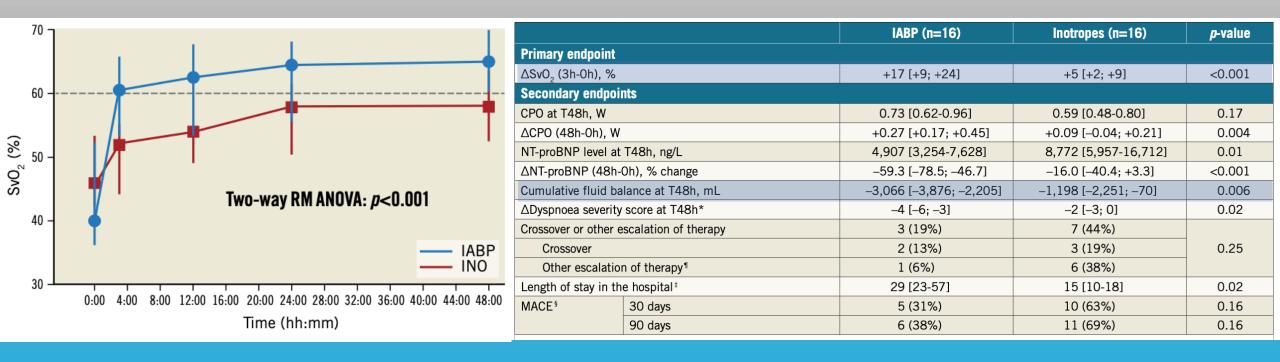
Responders = Diastolic pressure augmentation $\hat{1}$ > 40 mmHg


Real world Practice Study with 40cc vs50cc IABP (n = 52)40cc IABP50cc IABP

IABP Hemodynamic Variables	40 cc IABP	50 cc IABP	P-Value
Systolic unloading (B-F)	9 ± 4	13 ± 7	.01
Diastolic augmentation (D-A)	56 ± 18	71 ± 26	.02

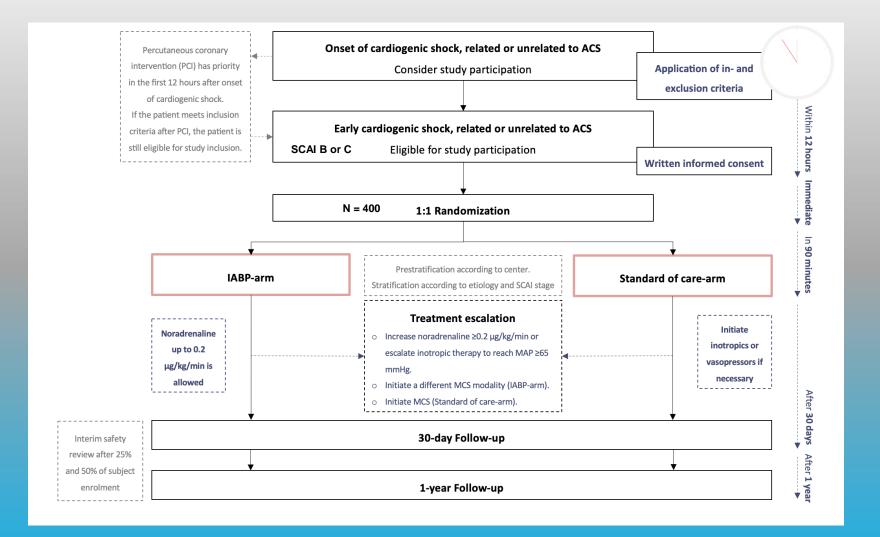
When IABP does work...

	Univariate Analysis		Multivariate Analysis		VIF
	P-Value	Odds Ratio (95% CI)	P-Value	Odds Ratio (95% CI)	
Dichotomous variables	- 01				
Heart rate <92 beats/min	<.02*	4.38 (1.69-11.4)	.02*	4.08 (1.25-13.3)	1.23
CVP <9 mm Hg	<.001*	7.27 [2.76-19.2]	.18	3.27 (0.59-18.2)	2.79
Mean pulmonary artery pressure <37 mm Hg	<.001*	6.38 (2.44-16.7)	.26	2.09 (0.59-7.47)	1.81
Pulmonary capillary wedge pressure <25 mm Hg	<.001*	10.5 (3.52-31.5)	.02*	4.66 (1.29-16.9)	2.71
Cardiac index >1.85 L/min/m²	<.01*	4.48 (1.61-12.5)	.09	2.98 (0.83-10.7)	1.18
Pulmonary artery pulsatility index >2.45	.03*	2.71 (1.12-6.57)	.64	0.677 (0.13-3.52)	1.87
VIF = variance inflation factor; CI = confidence interval. *P<.05 by logistic regression analyses.					

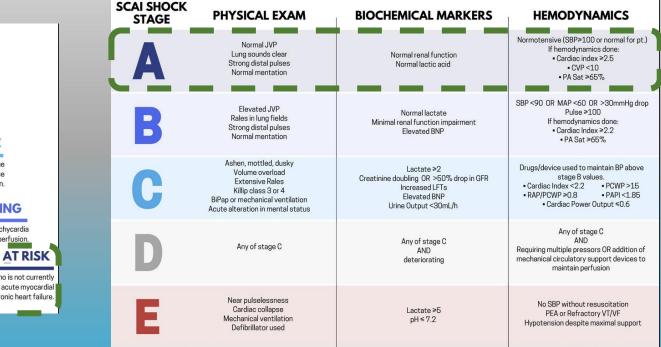


Baldetti et al. Circulation Heart Failure 2021;14:1263-77

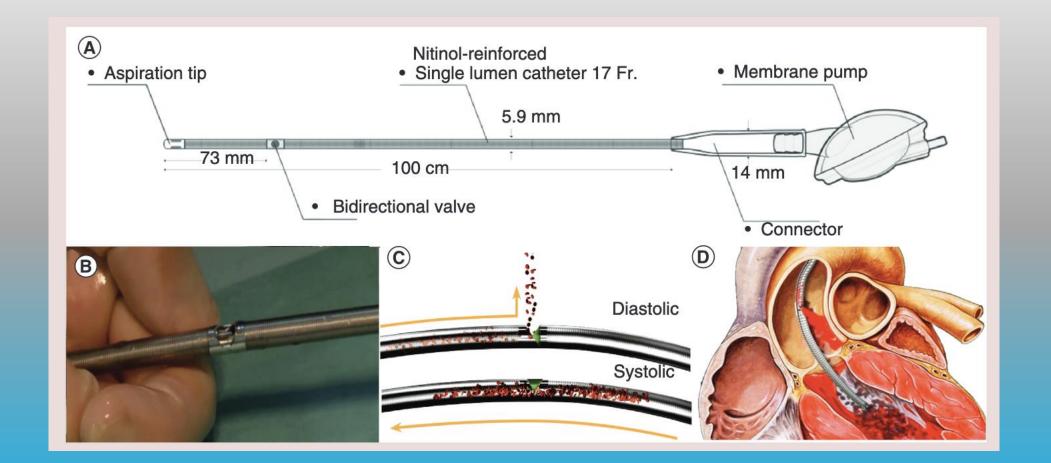
When IABP does work...

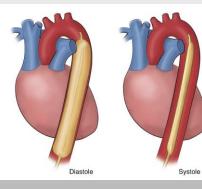

- Randomized Trial in decompensated heart failure & Low output n= 32
- o 50mL IABP bedside implant vs. Inotropes
- Primary Endpoint SvO₂ @ 3 hours

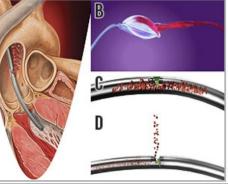
Erasmus MC


zafin

IABP On Time RCT

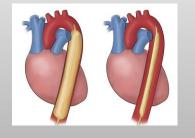

Pulsatile MCS in High-Risk PCI

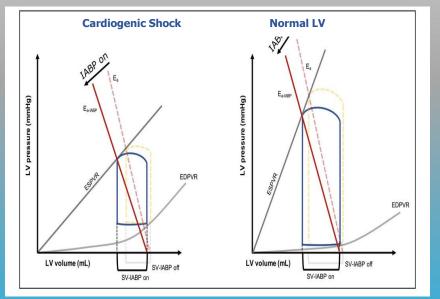

IVAC2L Principle



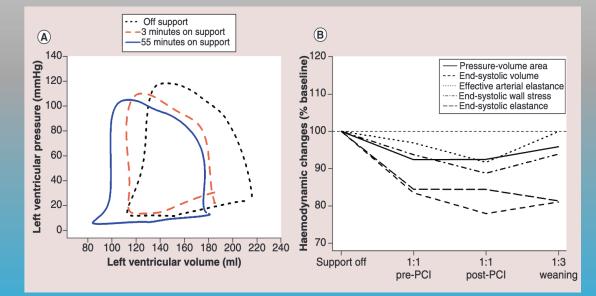
Pulsatile MCS

A





	ІАВР	iVAC2L	
Profile	7F	17F	
Pulsatile cardiac support	+ 0.5 L/min	+ 1.4 – 2.0 L/min	
Stroke Volume	\leftrightarrow	1	
Stroke Work	7	↑	
LV end diastolic pressure	\leftrightarrow	\downarrow	
LV end systolic pressure	\downarrow	\downarrow	
LV end diastolic volume	\leftrightarrow	\downarrow	
LV end systolic volume	×	\downarrow	
Diastolic aortic pressure	↑	↑	
Systolic aortic pressure	\downarrow	\downarrow	
МАР	7	↑	
Cardiac output	7	↑	



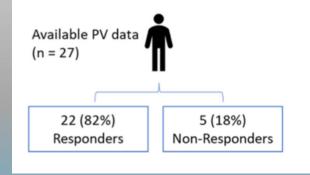
Pulsatile MCS & Cardiac Mechanics

Baldetti et al. Circulation Heart Failure 2021;14 Bastos et al. Future Cardiology 2020;16:103-12

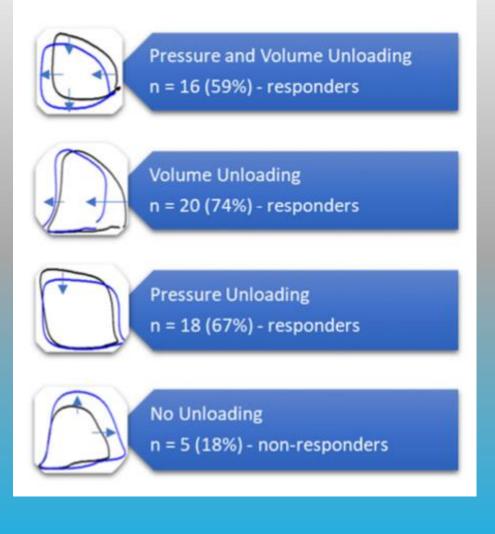
PULSE TRIAL

- DESIGN: Multi-centric open-label trial, with patients undergoing high-risk PCI under mechanical circulatory support.
- > OBJECTIVE: To understand by PV loops the hemodynamics of pulsatile LV-to-aorta support in high-risk PCIs
- PRINCIPAL INVESTIGATORS:
 M. Bastos & NM Van Mieghem
 Erasmus University Medical Center,
 Rotterdam, The Netherlands.

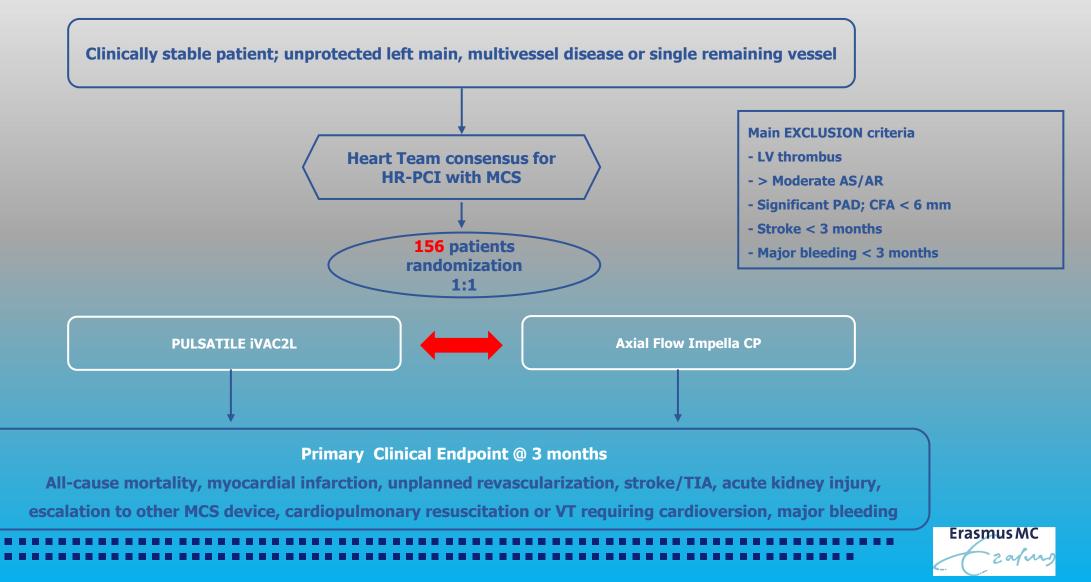
- > Age > 18 years
- > Heart team consensus for high-risk PCI
- > Exclusion
 - □ signs of cardiogenic shock
 - Significant aortic valve disease
 - **D** Peripheral artery disease and/or size
 - < 6mm in diameter



PULSE TRIAL


n	29		
Age (years)	74 (70-81)		
Gender (M) (%)	65.5 (19)		
Diabetes Mellitus (%)	31 (9)		
Hypertension (%)	72.4 (21)		
Stable angina (%)	55.2 (16)		
Unstable angina (%)	20.7 (6)		
ACS (%)	37.9 (11)		
Chronic kidney disease (%)	44.8 (13)		
COPD (%)	24.1 (7)		
Mitral regurgitation (%)	34.5 (10)		
Atrial fibrillation (%)	20.7 (6)		
EF < 40% (%)	37.9 (11)		
SYNTAX SCORE	31 ± 8		
Euroscore II	3.9 (1.9-5.2)		

PULSE TRIAL – IVAC2L LV UNLOADING



Bastos et al. Cardiovasc Revasc Med 2022;42:133-42

PULSE II TRIAL

Pulsatile versus Axial flow MCS in high-risk PCI

In conclusion

> MCS = valuable tool in high-risk PCI yet difficult to prove as it most often will only run in the

background

- \checkmark Timing and LV filling = key to demonstrate LV unloading
- > IABP may still be effective in selected patients with (early) HD compromise
- In terms of pulsatile MCS
 - ✓ **IABP** may not be potent enough in severe hemodynamic compromise
 - ✓ **PulseCath iVAC2L = more potent & may be effective in high-risk PCI**
 - ✓ New RCTs are kicking off in 2024

