

Angiography-Derived FFR for Bifurcation Lesions

Shengxian Tu, PhD, FACC, FESC

Cardiovascular Innovative Instrument and Intelligent Computing (CIIIC) Lab School of Biomedical Engineering

Shanghai Jiao Tong University

饮水思源•爱国荣

Speaker's name: Shengxian Tu

 \blacksquare I have the following potential conflicts of interest to declare:

Co-founder: Pulse Medical Receipt of grants / research support: Pulse Medical Consultancy: Pulse Medical

- There is big **mismatch** between angiographic severity and functional severity
- Jailed SB FFR after MV stenting could define the functional significance of SB lesions, guide stenting strategy, and avoid unnecessary complex interventions

Lee et al., JACC Cardiovasc Interv 2022;15:1297-1309

Koo et al., Eur Heart J 2008;29:726-732

A New Bifurcation Model to Quantify Stenosis Severity

Tu et al. J Am Coll Cardiol Interv 2015; 8:564-574.

A New Bifurcation Model to Quantify Stenosis Severity

Tu et al. J Am Coll Cardiol Interv 2015; 8:564-574.

TABLE 5Diagnostic Performance of 3-Dimensional QuantitativeCoronary Angiography

	DS%HK ≥50%	DS%HK ≥56%	MLD ≤1.35 mm	MLA ≤1.70 mm²
Accuracy	64 (53-75)	68 (57-79)	62 (50-73)	67 (56-77)
Sensitivity	68 (50-83)	53 (35-80)	79 (62-91)	76 (59-89)
Specificity	61 (46-76)	80 (65-90)	48 (33-63)	59 (43-74)
PPV	58 (41-73)	67 (46-84)	54 (39-68)	59 (43-74)
NPV	71 (54-83)	69 (54-81)	75 (55-89)	77 (59-89)

Tu et al. J Am Coll Cardiol Interv 2015; 8:564-574.

• Final jailed SB FFR is associated long-term clinical outcomes

Unadjusted 5-year event rate according to FFR in LCx after LM simple crossover stenting

Lee et al., JACC Cardiovasc Interv 2019;12:847-855

- Technically difficult for jailed SB FFR assessment after MV crossover stenting
- Safety concern (potential damage in both pressure wire and stent strut)

SB FFR in up to 9.4% lesions could not be measured despite KBI using a 1.2-mm SB balloon

Differences in interference with pressure-wires between stent strut

Chen et al., JACC Cardiovasc Interv 2015;8(4):536-546

Warisawa et al., Cardiovasc Revasc Med 2020;21(6):765-770

Angiography-Derived Quantitative Flow Ratio (QFR)

First generation QFR

Second generation µQFR/µFR

Tu S, et al. JACC Cardiovasc Interv. 2016;9:2024-35

Tu S, et al. Catheter Cardiovasc Interv 2021;97(2):1040-1047

2D µQFR vs. 3D µQFR

0.72

1 0.6

0.72 1.8mm

80.0

µQFR2

49%(1.4mm)

40.0

60.0

Ding, Tu, Wijns et al. JSCAI 2022; 1: 100399

$2D \mu QFR vs. 3D \mu QFR$

FFR ≤0.80 as reference

	µQFR1 ≤0.80	µQFR2 ≤0.80	3D-µQFR ≤0.80
Accuracy %	92.1 (89.0, 95.3)	92.5 (89.4, 95.6)	93.2 (90.3, 96.2)
Sensitivity %	88.1 (80.2, 93.7)	88.1 (80.2, 93.7)	90.1 (82.5, 93.7)
Specificity %	94.4 (90.0, 97.3)	95.0 (90.7, 97.7)	95.0 (90.7, 97.7)
PPV %	89.9 (82.2, 95.0)	90.8 (83.3, 95.7)	91.0 (83.6, 95.8)
NPV %	93.4 (88.7, 96.5)	93.4 (88.8, 96.5)	94.4 (90.0, 97.3)
+LR	15.8 (8.6, 28.9)	17.5 (9.2, 33.3)	17.9 (9.4, 34.0)
-LR	0.13 (0.07, 0.2)	0.13 (0.07, 0.2)	0.10 (0.06, 0.2)
AUC	0.96 (0.93, 0.98)	0.95 (0.92, 0.98)	0.95 (0.92, 0.97)

Single-view µQFR and two-view 3D-µQFR had comparable accuracy

Ding, Tu, Wijns et al. JSCAI 2022; 1: 100399

Two Views Is Not Always Better

Diagnostic Performance of µQFR

797 patients, 877 vessels (feasibility 95.4%) with paired μQFR and FFR core lab, blinded analysis using the FLAVOUR* study population

	Pre-PCI µQFR ≤0.80			
Accuracy %	90 (88, 92)			
Sensitivity %	82 (77, 86)			
Specificity %	94 (92, 96)			
PPV %	87 (83, 91)			
NPV %	92 (89, 94)			
+LR	14.3 (10.3, 19.9)			
-LR	0.19 (0.1, 0.2)			
AUC	0.95 (0.93, 0.96)			
Pre-PCI FFR <0.80 as reference				

Ding et al, Manuscript under review

* Koo et al. N Engl J Med 2022;387:779-89

Offline post-PCI µQFR assessment

Post-PCI LAD µQFR

Post-PCI LCx µQFR

Post-PCI residual ischemia was detected in 155 (13.2%) patients after LMB PCI

Wang, Tu, Wijns, Xu, et al. Eur Heart J 2023; doi: 10.1093/eurheartj/ehad318

Time-To-Event Curves For 3-Year Clinical Outcomes

Wang, Tu, Wijns, Xu, et al. Eur Heart J 2023; doi: 10.1093/eurheartj/ehad318

- LMB lesions receiving LM-LAD crossover stenting
- Post-PCI low QFR was defined as μ QFR <0.80 and the primary endpoint was 5-year TLF

Limitations of Agiongraphy-Based Lumen Assessment

Discordance between angiographic DS% and FFR in jailed SB

The major mechanism could be **carina shift**; other mechanisms included plaque shift and suboptimal angiographic imaging.

Coronary Tree Reconstruction

3D QCA (side branches) + OCT (main vessel) = Tree Model

OCT-Modulated µQFR (OCT-µFR) from Co-registered Data

100-Specificity

n = 269 vessels

Validation of OCT-µFR in Main Vessels

Suboptimal angiographic image quality (109 vessels)

	OCT-μQFR ≤ 0.80	µQFR ≤ 0.80	р
AUC	0.93	0.87	0.028
Accuracy	90%	81%	0.056

Optimal angiographic image quality (160 vessels)

	OCT-µQFR ≤ 0.80	µQFR ≤ 0.80	р	
AUC	0.94	0.94	0.879	
Accuracy	93%	93%	0.828	

Angiography-OCT Fusion for Physiological Assessment

Fusion of OCT and Angiography in LMB

Summary

- Angiography-derived physiology provided significant prognostic value in patients undergoing LMB
- Future directions:

(1) To investigate whether the fusion with intracoronary imaging could improve the accuracy of angiography-derived SB physiological assessment in bifurcation lesions
(2) To investigate the performance of OCT/IVUS-µFR for guiding SB treatment after MV crossover stenting

(3) Comprehensive assessment of anatomy, physiology, and biomechanics for optimal management of coronary bifurcation lesions

