

Pre-emptive Coil Embolization of IMA/Lumbar artery During EVAR Procedure

Junichi Tazaki, MD

Department of Cardiovascular Medicine, Japanese Red Cross Wakayama Medical Center, Japan

Disclosure

Name of Authors :Junichi Tazaki

①Consultation fees:	none
<pre>②stock ownership/profit:</pre>	none
③patent fees:	none
(4) remuneration for lecture:	none
(5) manuscript fees:	none
<pre>@trust research/joint research funds:</pre>	none
⑦scholarship fundnone	none
(8) Affiliation with Endowed Department:	none
Other remuneration such as gifts:	none

Endovascular versus open repair of abdominal aortic aneurysm in 15-years' follow-up of the UK endovascular aneurysm repair trial 1 (EVAR trial 1): a randomised controlled trial

Rajesh Patel, Michael J Sweeting, Janet T Powell, Roger M Greenhalgh, for the EVAR trial investigators*

EVAR1 trial :Lancet 2016; 388: 2366-74

OSR vs EVAR

1999-2004 1252 patients AAA>55mm

Persistent Type II endoleak Case : 81y.o. male AF IHD HTN HLP

AAA pre 57mm \rightarrow 6month 55mm \rightarrow 4y 60mm

TCTAP2024 Persistent type II EL : cause of malignant cycle after EVAR

• Persistent type II EL was associated with high incidence of adverse event and additional procedure.

• Coil embolization after EVAR could not control all sac enlargement cases with type II endoleak.

We should perform EVAR without persistent type II EL!

Pre-emptive Coil embolization to avoid Type II EL before EVAR

Endovascular Aneurysm Repair With Inferior Mesenteric Artery Embolization for Preventing Type II Endoleak: A Prospective Randomized Controlled Trial

Samura M, Morikage N, Mizoguchi T, et al. Ann Vasc Dis 2018; 11: 259–264.

TableClinical outcomes in the intension-to-treat analysis of endovascular aneurysm repair with inferior mesenteric artery embolization for preventing
type II endoleak in randomized control trial (quote from the reference 24)

Variables	Embolization ($n=53$)	Nonembolization (n=53)	Р	ARR (95% CI)	NNT (95% CI)
Follow-up periods, mo	22.5±11.5	22.4±11.6	0.95		
Presence of T2EL	13 (24.5%)	26 (49.1%)	0.009	24.5 (6.2-40.5)	4.1 (2.5–16.1)
Source of T2EL (% in T2EL presence)					
IMA	0	3 (11.5%)			
LAs	13 (100%)	13 (50.0%)			
IMA+LAs	0	7 (26.9%)			
Others (MSA, LAs+MSA or ARA)	0	3 (11.5%)			
Aneurysmal diameter change, mm	-5.7 ± 7.3	-2.8 ± 6.6	0.037		
Aneurysmal growth $\geq 2 \text{ mm}$ related to T2EL	2 (3.8%)	9 (17.0%)	0.030	13.2 (1.6–18.6)	7.6 (5.4–61.4)
Source of T2EL (% in related to T2EL)					
IMA, IMA+LAs	0	8 (88.9%)			
Others	2 (100%)	1 (11.1%)			
Secondary intervention	1 (1.9%)	1 (1.9%)	1.00		
Related to T2EL	0	0			

ARA indicates accessory renal artery; ARR, absolute risk reduction; CI, confidence interval; IMA, inferior mesenteric artery; LA, lumbar artery; MSA, medial sacral artery; NNT, number needed to treat; T2EL, type II endoleak.

Abdominal Aortic Aneurysm Shrinkage up t 2 Years Following Endovascular Repair wit PEmbolization for Preventing Type 2 Endoleak: A Retrospective Single Center Study

Fig. 3. Kaplan-Meier curves of aneurysm sac shrinkage **(A)** and aneurysm sac enlargement **(B)** up to 2 years after EVAR.

Pre-emptive Coil embolization

- Target
 IIA: internal iliac A

 IMA: inferior mesenteric A
 Iumbar A
 Median sacral A

 Embolic material Coil (pushable, Detachable) Vascular plug Stentgraft

AP2024

Pre-emptive embolization with Aorta extension

Aorta extension implantation

80's y.o. female

IMA embolization with 36mm aortic cuff Before EVAR

10

3.9mm (3D)

計測4

St: 22591 Se DFOV 35(cm)

TCTAP2024

IMA & L3 lumbar embolization with 36mm aortic cuff Before EVAR

IMA embolization with 36mm aortic cuff Before EVAR

6 month after EVAR

Pre-emptive Coil embolization to avoid Type II EL before EVAR

Sheath support technique for pre-emptive coil embolization

Difficult to manipulate catheter

Sheath support technique for pre-emptive coil embolization

Pre-emptive embolization for IMA

80's y.o male IMA embolization Interlock 5/15, 4/15, 3/12

TCTAP2024

Sac decreased 6 month after EVAR

Before EVAR 58mm 6month after EVAR 47mm

Pre-emptive embolization for Lumbar

L3 Lumbar embolization with EMBOLD

83's y.o. male AAA AF HTN DM

L4 Lumbar embolization with EMBOLD

83's y.o. male AAA AF HTN DM L3 Lumbar embolization with EMBOLD

83's y.o. male AAA AF HTN DM

L4 Lumbar embolization with EMBOLD

Excluder comformable 28-14.5-120

Rt:16-20-135 Lt:16-20-135

L3 Lt lumbar coil L4 lumbar coil

Failure Rt L3 lumbar

AP2024

Procedure time 166min contrast 120ml

KUHP pre-emptive coil cases

2013/Jan-2019/Sep

AAA patients planed to perform EVAR

Baseline characteristics

	overall (n=127)	Simple EVAR (n=79)	Pre-emptive coil (n=48)	Р
Age	78.0±7.6	77.9±0.9	78.0±1.1	0.50
Male	110 (87%)	76 (85%)	43 (90%)	0.44
Aneurysm Diameter(mm)	51.9±7.1	51.4±7.1	52.7±7.0	0.85

Baseline CT analysis

	overall (n=127)	Simple EVAR (n=79)	Pre-emptive coil (n=48)	Ρ
IMA patency	89 (71%)	50 (64%)	39(81%)	0.04
IMA diameter (mm)	2.1±1.6	2.0±1.7	2.4±1.4	0.13
Lumbar A patency	118(94%)	70 (89%)	48 (100%)	0.01
Lumbar A diameter (mm)	2.3±0.8	2.2±0.9	2.4±0.6	0.09
Number of patent Lumbar A	3.5±1.8	3.2±1.9	4.1±1.5	0.004

KUHP EVAR In-hospital outcome

	overall (n=127)	Simple EVAR (n=79)	Pre-emptive coil (n=48)	Ρ
Skin-to skin Procedure time(min)	160 (120-197)	120 (120-206)	150 (125-180)	0.21
Contrast volume(ml)	80 (65-110)	83 (65-120)	80 (63-100)	0.05

KUHP EVAR In-hospital outcome

	overall (n=127)	Simple EVAR (n=79)	Pre-emptive coil (n=48)	Ρ
Diameter Change (mm)	-4 (2-8)	-3 (-17)	-5 (-310)	0.14
Diameter dilatation>2mm	6 (5%)	5 (6.3%)	1 (2.1%)	0.41
Diameter Shrinkage>5mm	57 (45%)	31 (39%)	26 (54%)	0.10

Conclusion

- EVAR has been required long term durability as well as open surgical repair addition to the minimally invasiveness.
- Persistent type II endoleak associated with adverse event including aneurysm sac enlargement and additional procedure.
- Pre-emptive embolization of IMA/Lumbar artery might associate with long term durability of EVAR.

