

## TAV-in-TAV: Planning and Optimizing the Procedure

#### Dr Karl Poon, MBBS, FRACP

The Prince Charles Hospital St Andrew's War Memorial Hospital University of Queensland, Brisbane, Australia



#### **Disclosure**

• In the past 12 months, I and/or my spouse, have received the following:

- Relevant conflict to this presentation Company
  - Consulting fee/Proctoring fee

Edwards LifeSciences, Abbott, Anteris





#### TAV-in-TAV vs. TAV-in-SAV: so what's so different?

20mmS3 in 21mm Perimount BVF with 21 mm TRUE Gradient: 10 mmHg TTE 23mmS3 in 23mm XT **Pre** BVF with 23mm TRUE Gradient: 5 mmHg TTE

**TAV-in-TAV can be straight forward** 





# Registry data of feasibility and safety in CAREFULLY selected patients

**CENTRAL ILLUSTRATION** Repeated Transcatheter Aortic Valve Replacement for Transcatheter Heart Valve Dysfunction

| Redo-TAVR<br>For:                                         | Incidence | Residual<br>Gradient | Coronary Flow<br>Obstruction | Mortality<br>at 30 days |  |
|-----------------------------------------------------------|-----------|----------------------|------------------------------|-------------------------|--|
| Failed TAVR<br>Valve                                      | 0.22%     | 13 mm Hg             | 0.7%                         | 1.4%                    |  |
| Failed TAVR<br>Procedure                                  | 0.11%     | 11.5 mm Hg           | 1.3%                         | 5.4%                    |  |
| Landes, U. et al. J Am Coll Cardiol. 2020;75(16):1882-93. |           |                      |                              |                         |  |

Outcomes stratified for patients presented with probable TAVR failure and those with probable THV failure. TAVR = transcatheter a ortic valve replacement; THV = transcatheter heart valve.

Circulation: Cardiovascular Interventions

#### **ORIGINAL ARTICLE**

Transcatheter Aortic Valve Replacement for Degenerated Transcatheter Aortic Valves The TRANSIT International Project

Luca Testa©, MD, PhD; Mauro Agnifili, MD; Nicolas M. Van Mieghem©, MD, PhD; Didier Tchétché, MD;

- TRANSIT
  - N=172 TAVI in TAVI
  - No coronary obstruction (!!)
- Caution:
  - Selection bias how many cases rejected?
  - Case series only





### TVT registry on TAV-in-TAV with S3U in TAVI

Primary endpoints of death and stroke for SAPIEN 3 platform<sup>1</sup>



тстар2024

Makkar, R et al. Lancet 2023

# **TAV-in-TAV:** <u>coronary obstruction risk!</u>



 Placement of a THV within a THV will render the 1<sup>st</sup> THV a stent graft, pinning down the

**Neoskirt concept** 



Ochiai T et al. Risk of Coronary Obstruction Due to Sinus Sequestration in Redo Transcatheter Aortic Valve Replacement JACC Intv 2020;13:2617-27

# **TAV-in-TAV: unique challenge – heterogeneity** Heterogeneity in design Variable implant depth Variable expansion



Buzzatti, N, Latib A. JACC Imaging 2020 Aortic valve in valve app – Prof Bapat

## Index TAVI – Edwards Sapien platform



- Short frame, intra-annular
- Leaflets/neoskirt at the commissure tabs
- Due to its design, leaflets or neoskirt plane MAY not extend above STJ/coronary ostia



• Fundamentally lower risk of coronary obstruction "by design"





#### A case example – 5 year old underfilled 29mmS3

An under-expanded THV



### **TAV-in-TAV procedure plan**

Plan and Rationale

- Right transfemoral TAV-in-TAVI with left transfemoral "BVF"
- Sentinel cerebral embolic protection
- TRUE balloon 26mm PRE dilatation
- 26mm S3U + 2cc
- TRUE Balloon post dilatation

Contralateral access to BVF so ipsilateral THV ready to deploy if AR

- Concern re embolic risk due to multiple inflation planned
- Address under-expansion prior to new THV
- >Achieve high pressure expansion
- Prevent underexpansion of TWO stent frames





### **TAV-in-TAV**

Procedural outcome

|                                                                |                                                                            | <ul> <li>Procedure outcome</li> <li>Large (6mm) debris in CEP basket</li> <li>No CVA/PPM/vascular complications</li> <li>Discharged day 2</li> <li>Discharged on warfarm</li> </ul> |              |  |
|----------------------------------------------------------------|----------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|--|
|                                                                |                                                                            | Echocardiographic of<br>• Mean gradient:12mmHe<br>• Peak: 21mmHg<br>• EOA: 2.6cm2                                                                                                   | tcome Day 1  |  |
| 3U 26mm +2cc inflation @ 9ATM<br>op of new THV as per previous | TRUE 26mm balloon inflation<br>Coaptation length on TEE from 9mm to<br>4mm | Echocardiographic of<br>• Mean gradient:12mmHg<br>• Peak: 27mmHg<br>• EOA: 2.6cm2                                                                                                   | kcome Day 68 |  |

S

**TCTAP2024** 



#### **TAV-in-TAVI postscript – CT TAVI**

Learning points – challenges for TAV-in-TAV



 Overall improved expansion of THV particularly the first THV, particularly inflow/outflow

 Despite predilatation significant "sandwiched" tissue from 1st THV

 Despite postdilatation mid body remains waisted



### Index TAVI – Medtronic CV/Evolut R/FX

- Tall frame, supra-annular Neoskirt
  - Leaflets/neoskirt variable particularly S3U
  - Due to its design, leaflets or neoskirt plane almost always extend above STJ/coronary ostia



• Fundamentally very high risk of coronary obstruction "by design"





#### Medtronic SEV – coronary obstruction risk



Tarantini, G. Eurointervention 2020

Fovino, LN, Tarantini G. Coronary Angiography After Transcatheter Aortic Valve Replacement (TAVR) to Evaluate the Risk of Coronary Access Impairment After TAVR-in-TAVR, JAHA 2020

### **Medtronic SEV – challenging TAV-in-TAV**



Ochiai T et al. Risk of Coronary Obstruction Due to Sinus Sequestration in Redo Transcatheter Aortic Valve Replacement JACC Intv 2020;13:2617-27

Forrestal BJ, Risk of Coronary Obstruction and Feasibility of Coronary Access After Repeat Transcatheter Aortic Valve Replacement With the Self-Expanding Evolut Valve: A Computed Tomography Simulation Study, Circ Intv 2021

#### **TAV-in-TAV in Asian population – more difficult?**

**Comparison of SOV Sequestration Risk for Each Coronary Artery in Redo TAVR Between the BE-TAV and SE-TAV Groups** 90 *P* < 0.001 80 71.3 P < 0.001 P < 0.001 70 57.7 Incidence Rate (%) 55.6 60 P < 0.001 52.1 50 42.6 42.0 40 32.8 30 23.4 20 10 0 -LCA RCA Both One or Both ■ BE-TAV (n = 753) ■ SE-TAV (n = 331)

Miyawaki N, et al. JACC: Asia. 2024;4(1):25-39.

тстар2024

Miyawaki, N, et al Assessing Potential Risks of Future Redo Transcatheter Aortic Valve Replacement in Asian Patients, JACC Asia 2024

# S3U in Evolut – implant lower to avoid coronary obstruction – in exchange for leaflet overhang

![](_page_16_Figure_1.jpeg)

![](_page_16_Picture_2.jpeg)

![](_page_16_Picture_3.jpeg)

Sathananthan J, Eurointervention 2021 Grubb, Eurointervention 2023

![](_page_16_Picture_5.jpeg)

# TAV-in-TAV – no coronary obstruction does not mean coronary access

![](_page_17_Picture_1.jpeg)

![](_page_17_Picture_2.jpeg)

![](_page_17_Picture_3.jpeg)

#### Sinus sequestration risk worsens with high implant

![](_page_18_Figure_1.jpeg)

CT analysis of 1,900 consecutive patients simulating SAPIEN 3 TAVR across 3 targeted implant depths

![](_page_18_Figure_3.jpeg)

Koshy AN, GHL Tang, Circ Intv 2024 Ochiai T JACC Intv 2023

### Redo TAVI App – Thanks Dr Fukui & Bapat!

![](_page_19_Figure_1.jpeg)

#### Several key take home practical tips

- TAV-in-TAV perhaps with GA?
  - Millimeter precision aim for that Node 4
- Predilate/TRUE balloon 1st THV particularly BEV
  - Recognize and correct underexpansion of 1<sup>st</sup> THV
- Beware of further expansion of 1<sup>st</sup> THV particularly Evolut/CoreValve
  - VTA distance could be even less
- Cerebral embolic protection?

![](_page_20_Picture_8.jpeg)

![](_page_20_Picture_9.jpeg)

### Conclusion

- TAV-in-TAV requires meticulous pre-procedural planning to avoid coronary obstruction.
- TAV-in-TAV requires optimized procedural set-up.
- There are significant knowledge gaps in TAV-in-TAV and whilst feasible in most cases with good outcomes ongoing collaboration particularly postprocedural CTs will add to our understanding on this impending problem.
- Current data would support the use of a short-frame THV if future TAV-in-TAV is to be considered.
- Further, the index procedure should be optimized.

![](_page_21_Picture_6.jpeg)

![](_page_21_Picture_7.jpeg)