

From Theory to Practice:
Differences of ACURATE neo2
from Other Valves & Blending
the Best for Superior Performance

Sang-Rok Lee, MD,PhD
Division of Cardiology
Jeonbuk National University Hospital

Design features

Scientific

Open upper frame

Stablilization anchor & Provides unrestricted access for future coronary interventions¹

Supra-annular leaflets

Porcine pericardium leaflet (BioFix anti-calcification) Achieves large EOAs and single-digit gradients²

ACTIVE PVseal™…

Extended (60% larger*) sealing skirt conforms to the native aortic annulus minimizing PVL³

Annulus treatment range

Treats 20 mm to 27 mm annulus diameters

Top-down deployment with upper- and lower- crown anchoring provides precise procedures²

^{*} ACURATE neo2 Valve vs. ACURATE neo™ Valve

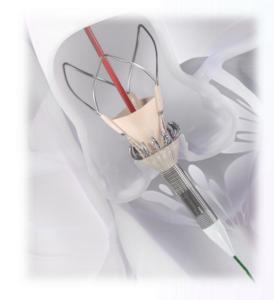
^{1.} Reobtain Coronary Ostia Cannulation Beyond Transcatheter Aortic Valve Stent (RE ACCESS); NCT04026204. J Am Coll Cardiol Intv. 2020

^{2.} Möllmann H, Holzhey DM, Hilker M, et al. The ACURATE neo2 Valve System for transcatheter aortic valve implantation: 30-day and 1-year outcomes. Clin Res Cardiol. 2021;110:1912–1920.

^{3.} Early neo2 Registry. Full Core-Lab Results of TAVI with the New ACURATE neo2 Valve. TVT Congress. Presenter: Andreas Rück. July 20, 2021.

Contents

- 1. Lowest PPI rate
- 2. Single digit gradients and Large EOAs
- Upgraded active Pvseal technique to decrease PVL
 (60% larger sealing skirt compared to previous generation)
- 4. Unrestricted coronary access
- 5. Smooth deliverability
- 6. Case (horizontal aorta, very severe AS..)

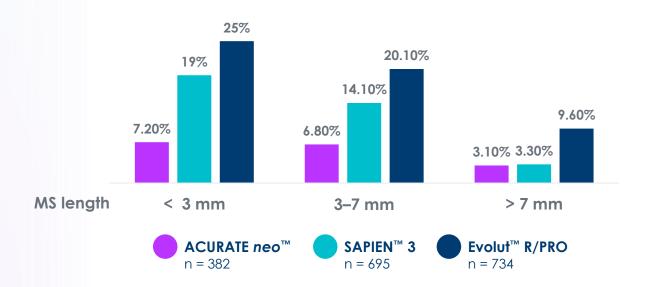


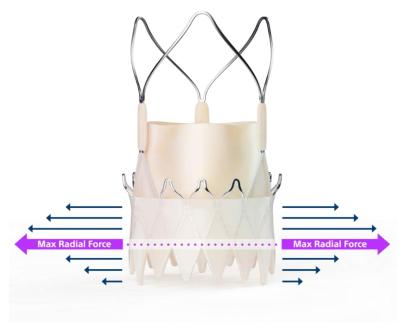
Best-in-class PPI

Lower patients' pacemaker risk

- Patients who receive PPI after TAVI experience higher mortality and rehospitalization risk¹
- With top-down deployment and upper- and lower-crown anchoring, the ACURATE neo2[™] Aortic Valve System minimizes LVOT protrusion

^{1.} Pompeu M, et al. Late outcomes of permanent pacemaker implantation after TAVR: Meta-analysis of reconstructed time-to-event data, JSCAI. 2022. doi:https://doi.org/10.1016/j.jscai.2022.100434.
2. Rück A. Early neo2 Registry. Full Core-lab Results of TAVI with the New ACURATE neo2 Valve. TVT Congress. 2021.




Best-in-class PPI

ACURATE *neo2*[™] Aortic Valve System demonstrates the lowest PPI rates for patients at the highest risk of conduction injury¹

Post-TAVI pacemaker implantation rate by THV type and membranous-septum length (n = 1811)

Optimized radial outward force distribution minimizes conduction system injury¹

Single-digit gradients

Supra-annular valve design maximizes leaflet opening

for single-digit gradients and large EOAs¹

Single-digit gradients²

mmHg

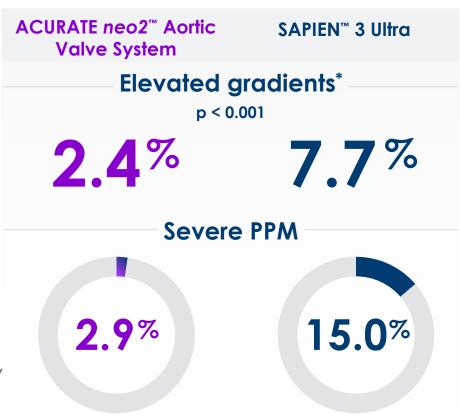
Large EOAs1

7 cm²

^{1.} Möllmann H, Holzhey DM, Hilker M, et al. The ACURATE neo2 Valve System for transcatheter aortic valve implantation: 30-day and 1-year outcomes. Clin Res Cardiol. 2021;110:1912–1920.

^{2.} Early neo2 Registry. Full Core-Lab Results of TAVI with the New ACURATE neo2 Valve. TVT Congress. Presenter: Andreas Rück. July 20, 2021.

Single-digit gradients



Protect patients' futures¹

- Severe PPM is associated with increased mortality post-TAVR²
- Minimize the risk of prosthesis-patient mismatch, even in patients with small annuli

Reduced rates of elevated gradients and severe PPM vs. SAPIEN™ 3 Ultra³

^{*(≥ 20}mmHg)

^{1.} Pibarot P, Dumesnil JG. Prosthesis-patient mismatch: Definition, clinical impact, and prevention. Heart. August 2006;92(8);1022-1029.

^{2.} Mompeu M. Impact of Prosthesis-patient mismatch after TAVR: JACC CI Sep 16, 2022.

^{3.} Pellegrini C. ACURATE neo2 versus SAPIEN 3 Ultra. Interventions for valvular disease and heart failure.

ACURATE neo2TM vs SAPIEN 3 UltraTM Head-to-Head Comparison

Porcine Pericardium, Supra Annular Leaflets
Self-Expanding (Top-down) Nitinol frame
CE marked 2020

Not FDA Approved, Investigational Device in the US

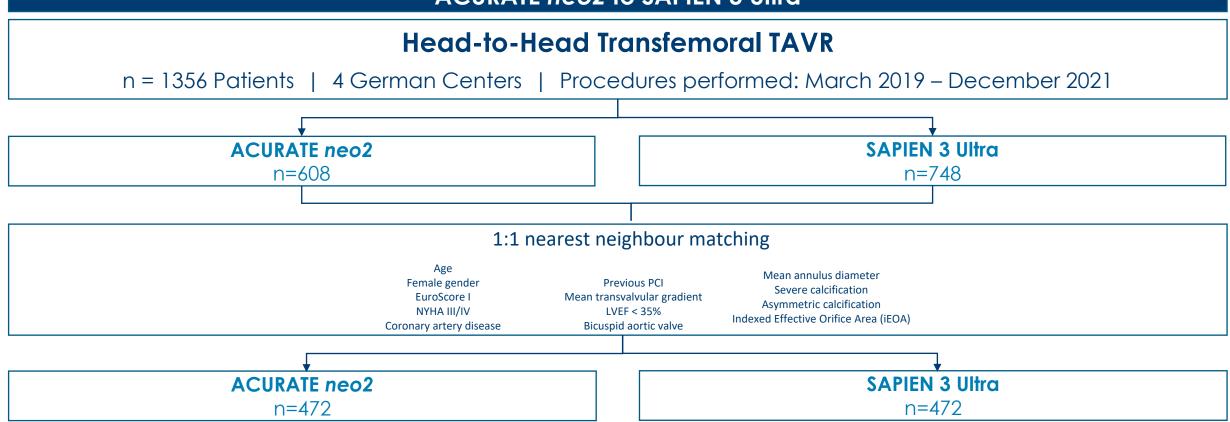
SAPIEN 3 Ultra Transcatheter Heart Valve

Bovine Pericardium, Intra-annular Leaflets

Balloon-Expanding Cobalt-Chromium Frame

CE marked 2018

FDA Approved 2018



Study Design

1st head-to-head comparison of ACURATE neo2 & SAPIEN 3 Ultra

Objective: To compare VARC-3 device and technical success (Primary Endpoint) and 30-day VARC-3 clinical endpoints (Secondary Endpoint) of ACURATE neo2 to SAPIEN 3 Ultra

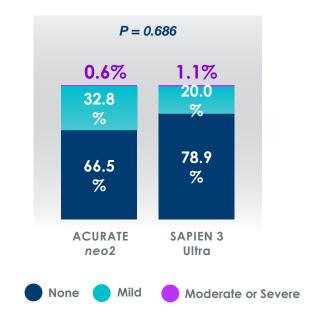
CAUTION: In Europe, ACURATE neo and neo2 Aortic Valve Systems are CE-marked. In the USA, ACURATE neo2 is an investigational device and restricted under federal law to investigational use only. Not available for sale.

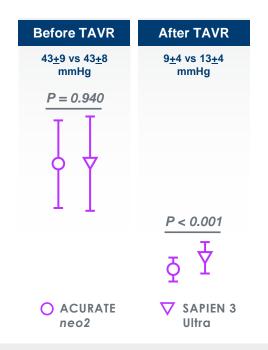
	Entire population			Matched population			
	ACURATE neo2 n=608	SAPIEN 3 Ultra n=748	p-value	ACURATE neo2 n=472	SAPIEN 3 Ultra n=472	p-value	
Age, years	82.0 [78.7 – 85.0]	81.4 [77.1 – 85.0]	0.032	82.0 [78.7 – 85.0]	81.6 [77.6 – 85.1]	0.584	
Female gender	289 (47.5)	398 (53.2)	0.038	239 (50.6)	246 (52.1)	0.696	
Logistic EuroScore, %	14.4 [8.1 – 23.4]	12.3 [7.7 - 21.3]	0.008	13.8 [7.9 – 23.0]	12.5 [7.9 - 21.9]	0.184	
NYHA III/IV	420 (69.1)	429 (57.4)	<0.001	305 (64.6)	297 (62.9)	0.636	
Coronary artery disease	376 (61.8)	558 (74.6)	<0.001	340 (72.0)	336 (71.2)	0.829	
Previous myocardial infarction	58 (9.5)	87 (11.6)	0.251	50 (10.6)	54 (11.4)	0.755	
Previous stroke	77 (12.7)	94 (12.6)	0.999	57 (12.1)	55 (11.7)	0.920	
COPD	74 (12.2)	86 (11.5)	0.735	57 (12.1)	56 (11.9)	0.999	
Peripheral artery disease	84 (13.8)	130 (17.4)	0.085	61 (12.9)	81 (17.2)	0.083	
eGFR, ml/min	65.0 [47.0 – 83.0]	64.0 [48.5 – 79.5]	0.684	65.0 [47.0 – 84.3]	62.0 [47.7 – 79.0]	0.198	
Previous pacemaker	75 (12.3)	71 (9.5)	0.095	57 (12.1)	46 (9.7)	0.296	
Atrial fibrillation	256 (42.1)	291 (38.9)	0.243	190 (40.3)	191 (40.5)	0.999	
Right bundle-branch block	56 (9.2)	85 (11.4)	0.211	50 (10.6)	60 (12.7)	0.361	
LVEF <35%	17 (2.8)	42 (5.6)	0.011	17 (3.6)	13 (2.8)	0.579	
Mean gradient, mmHg	42.0 [31.3 – 50.0]	44.0 [37.0 – 54.0]	<0.001	43.0 [34.0 – 52.0]	42.5 [34.8 – 51.0]	0.940	
Bicuspid aortic valve	20 (3.3)	97 (13.0)	<0.001	20 (4.2)	25 (5.3)	0.542	
Severe aortic valve calcification	126/606 (20.8)	206/747 (27.6)	0.004	114 (24.3)	115 (24.4)	0.954	
Asymmetric calcification	123 (20.2)	336 (44.9)	<0.001	120 (25.4)	135 (28.6)	0.305	
Mean annulus diameter, mm	23.7 [22.4, 25.1]	24.9 [23.4, 26.2]	<0.001	23.8 [22.4. 25.2]	24.9 [23.4. 26.2]	<0.001	

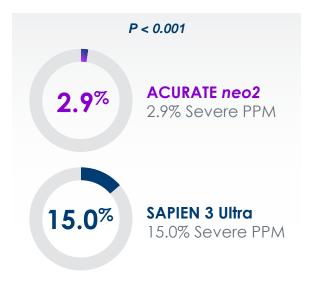
CAUTION: In Europe, ACURATE neo and neo2 Aortic Valve Systems are CE-marked. In the USA, ACURATE neo2 is an investigational device and restricted under federal law to investigational use only. Not available for sale.

	ACURATE neo2	SAPIEN 3 Ultra		ACURATE neo2	SAPIEN 3 Ultra	
	n=608	n=748	p-value	n=472	n=472	p-value
Pre-dilatation, n (%)	534 (87.8)	268 (35.8)	<0.001	434 (91.9)	148 (31.4)	<0.001
Post-dilatation, n (%)	250 (41.4)	111 (14.8)	<0.001	211 (44.7)	69 (14.6)	<0.001
Procedural time, min	44.0 [35.0 – 59.0]	46.0 [35.0 – 58.0]	0.867	45.0 [36.0 – 59.0]	46.0 [35.0 – 57.0]	0.472
Fluoroscopy time, min	9.4 [7.0 - 13.3]	10.2 [7.1 - 14.6]	0.033	9.8 [7.3 - 13.8]	10.2 [6.9 - 14.1]	0.974
Technical success (VARC-3)	575 (94.6)	714 (95.5)	0.529	448 (94.9)	450 (95.3)	0.880
Device success (VARC-3)	557 (91.6)	626 (83.7)	<0.001	434 (91.9)	401 (85.0)	0.001
Contrast agent, ml	40.0 [20.0, 116.0]	115.0 [36.0, 160.0]	<0.001	40.0 [22.0, 130.0]	117.5 [37.8, 160.0]	<0.001
Pre-discharge moderate/severe PVL n (%)*	4 (0.7)	6 (0.8)	1.000	3 (0.6)	5 (1.1)	0.723
Pre-discharge Mean gradient ≥ 20mmHg, n (%)	11 (1.8)	69 (9.3)	<0.001	11 (2.4)	36 (7.7)	<0.001
Indexed effective orifine area (cm²)**	0.9 [0.8, 1.1] (n=453)	0.8 [0.7, 0.9] (n=261)	<0.001	0.9 [0.8, 1.1] (n=342)	0.8 [0.7, 0.9] (n=167)	<0.001
Severe PPM, n (%)**	10/453 (2.2)	39/261 (14.9)	<0.001	10/342 (2.9)	25/167 (15.0)	<0.001
Major vascular complication (VARC-3)	39 (6.4)	66 (8.8)	0.122	29 (6.1)	45 (9.5)	0.069
Coronary obstruction requiring PCI	1 (0.2)	3 (0.4)	0.768	1 (0.2)	2 (0.4)	0.999
Annular rupture, n (%)	1 (0.2)	2 (0.3)	1.000	1 (0.2)	0 (0)	0.999
Acute kidney injury \$t 2-4, n (%)	18 (3.0)	23 (3.1)	0.999	15 (3.2)	15 (3.2)	0.999
30-day All-stroke**	18/598 (3.0)	23/734 (3.1)	0.999	16/464 (3.4)	11/465 (2.4)	0.435
30-day Pacemaker implantation, n (%)**	40/522 (7.7)	70/664 (10.5)	0.090	33/406 (8.1)	43/419 (10.3)	0.289
30-day mortality, n (%)**	11/598 (1.8)	18/734 (2.5)	0.566	8/464 (1.7)	11/465 (2.4)	0.646

^{*} Pre-discharge echocardiogram assessed. 10/1356 assessed by angio ** Data not available for full population. Sample sizes as indicated.


CAUTION: In Europe, ACURATE neo and neo2 Aortic Valve Systems are CE-marked. In the USA, ACURATE neo2 is an investigational device and restricted under federal law to investigational use only. Not available for sale.


Essential Matched Cohort Outcomes ACURATE neo2 & SAPIEN 3 Ultra


Similar and low Rates of PVL

Lower Mean Gradients

Lower Severe Prothesis-Patient Mismatch

0.6%

Moderate to Severe PVL

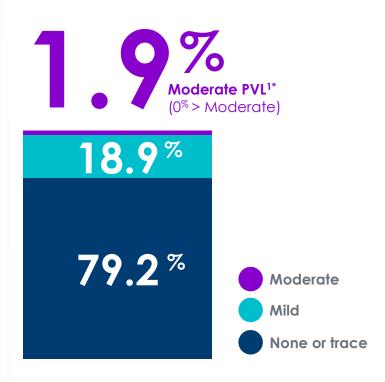
vs. 1.1% with SAPIEN 3 Ultra p=0.723

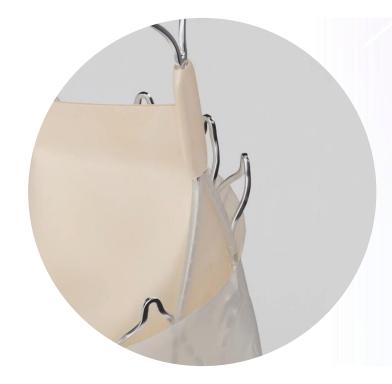
2.4% **Elevated Gradients***

vs. 7.7% with SAPIEN 3 Ultra p < 0.001*(≥ 20mmHg)

91.9% **Device success**

vs. 85.0% with SAPIEN 3 Ultra p = 0.001


CAUTION: In Europe, ACURATE neo and neo2 Aortic Valve Systems are CE-marked. In the USA, ACURATE neo2 is an investigational device and restricted under federal law to investigational use only. Not available for sale.



Advanced PVL performance

Protect against PVL with the ACURATE neo2™ Aortic Valve System's advanced sealing skirt.

Inner and outer ACTIVE

PVseal™ extends the full waist

of the ACURATE neo2 Valve,

maximizing sealing efficacy

^{*} At 30-days, Echocardiographic and CT imaging Independently core lab adjudicated

Unrestricted coronary access

Lower-risk TAVI requires preserved future access. TSTEMI following TAVI resulted in 2:

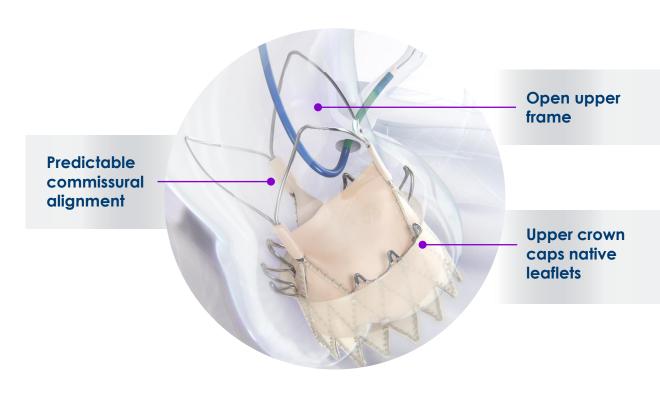
- 4x higher PCI failure rate
- 33% increased mortality rate

100%

ACURATE neo™ Valve platform

100% successful coronary cannulation n = 72

82%


Evolut™ R/PRO

82% successful coronary cannulation n = 123

99%

SAPIEN™

99% successful coronary cannulation n = 96

The ACURATE neo2 design is associated with favorable post-TAVI coronary access¹

^{1.} Reobtain Coronary Ostia Cannulation Beyond Transcatheter Aortic Valve Stent (RE-ACCESS); NCT04026204. J Am Coll Cardiol Intv. 2020.

^{2.} Faroux L, et al. ST-Segment Elevation Myocardial Infarction Following Transcatheter Aortic Valve Replacement. "https://www.jacc.org/journal/jacc" J Am. Coll. Cardiol. 2021 May, 77 (17) 2187 -2199.

Smooth deliverability

Low-profile, highly flexible catheter

Atraumatic nosecone

Optimized nosecone taper and guidewire transition for smooth atraumatic tracking

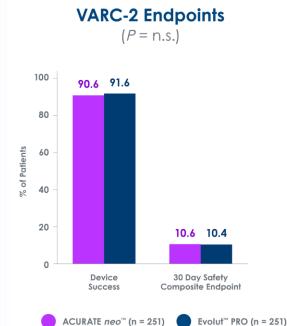
360° flexibility

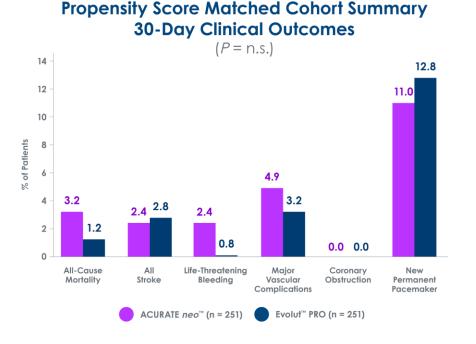
Spineless delivery system for enhanced flexibility

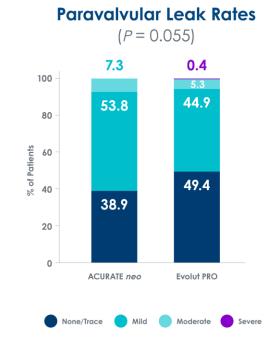
Intuitive handle design

Two-step implantation

Stable, predictable valve deployment


NEOPRO Multicenter Comparison Registry¹

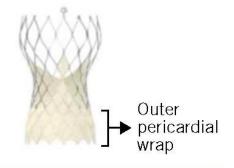

Outcomes of two next-generation selfexpanding TAVI valves in real-world patients

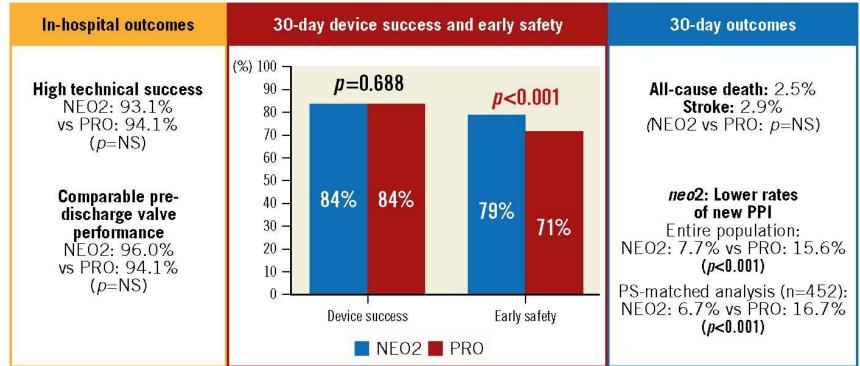

STUDY DESIGN: 1:1 propensity score matched multicenter comparison of ACURATE *neo* (n = 251) and EvolutTM PRO (n = 251) from 24 international centers

ACURATE neo demonstrated in PS-matched cohort

- Comparable VARC-2 device success and 30-day clinical outcomes
- Similar PVL rates with no PVL greater than moderate in ACURATE neo group

^{1.} Pagnesi M, et al. Transcatheter aortic valve replacement with next-generation self-expanding devices: A multicenter, retrospective, propensity-matched comparison of Evolut PRO versus ACURATE neo transcatheter heart valves. JACC: Cardiovascular Interventions. Mar 2019, 12(5)433-443; doi:10.1016/j.jcin.2018.11.036.




Comparison of Transcatheter Aortic Valve Replacement with the ACURATE neo2 vs Evolut PRO/PRO+ devices

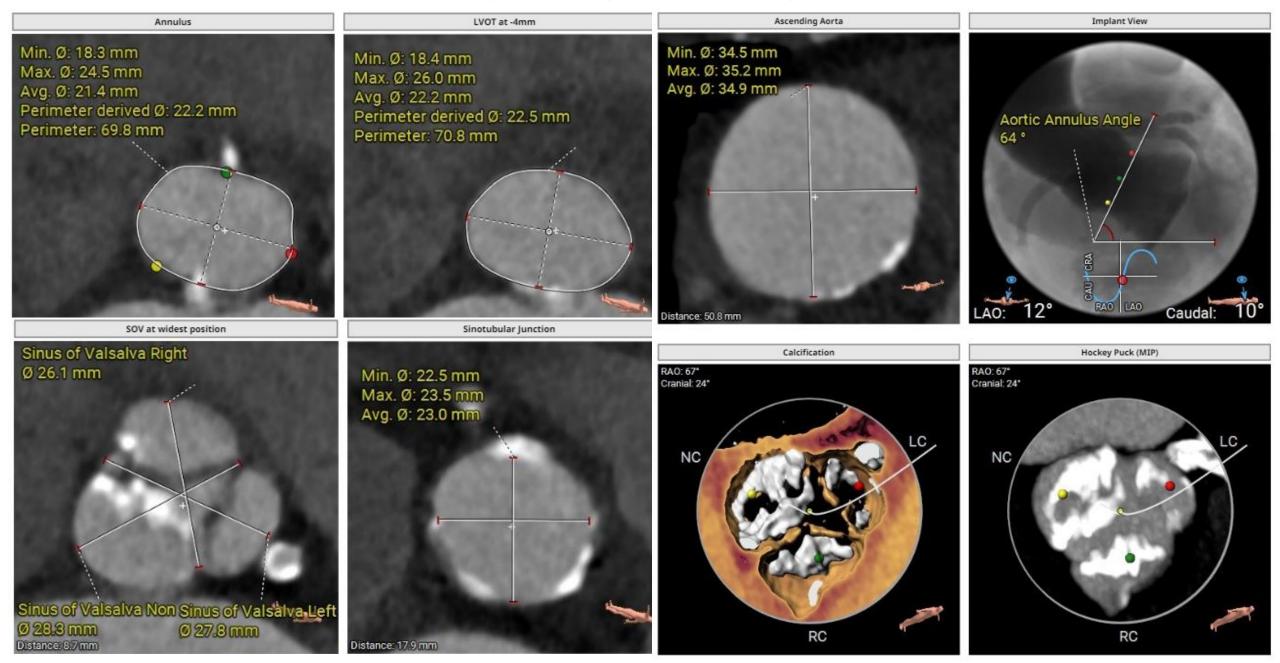
TAVR with ACURATE neo2 vs Evolut PRO/PRO+ Insights from the NEOPRO-2 registry

N=2,175 20 centres VARC-3-defined outcomes

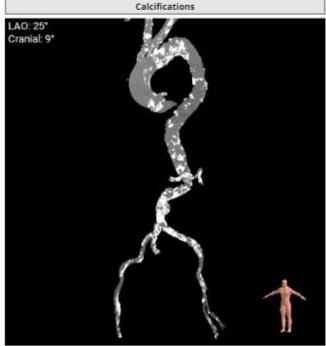
Case of TAVR

91 y/o Female

- 1. Very severe AS with moderate AR (AV area 0.58cm²)
- 2. Chronic AF, type 2 DM, HTN

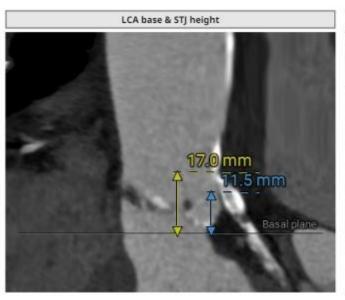


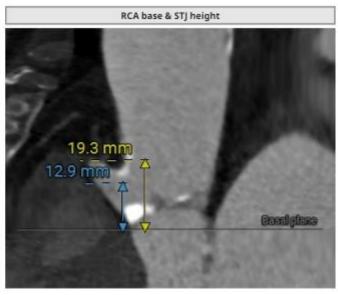
transaortic PG 139/72 mmHg, AV Vmax 6.0 m/s


aortic valve area 0.58 cm²

severe LV systolic dysfunction (EF 25 %), borderline LV dilatation (56/53 mm) with moderate AR

CT of Severe AS





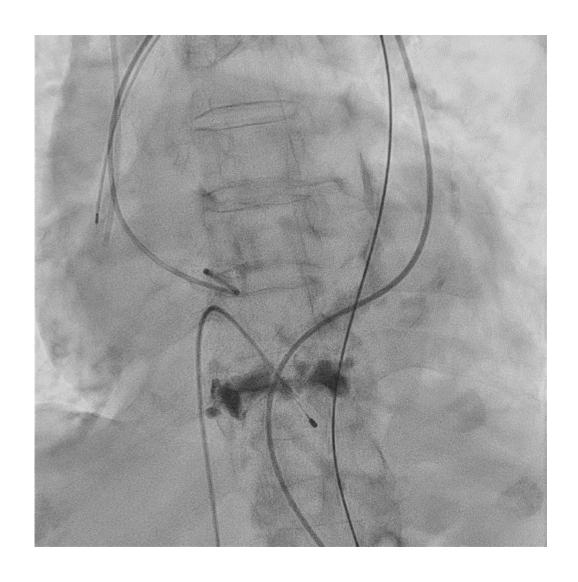
CT of Severe AS

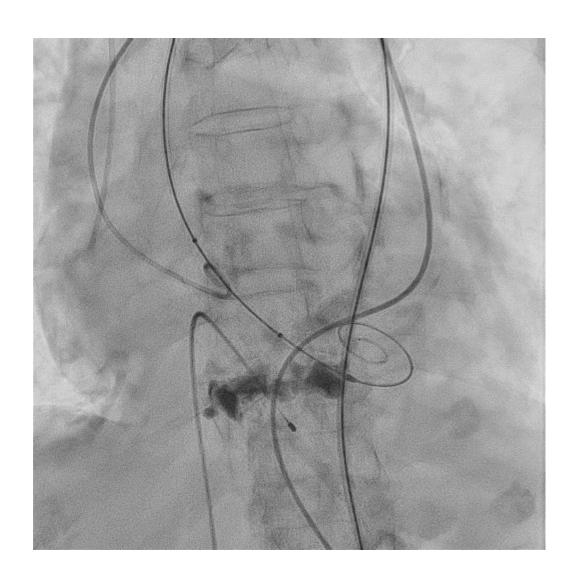
Annulus Perimeter: 69.8mm (ACURATE neo2 23mm)

Perimeter derived diameter = 22.2mm

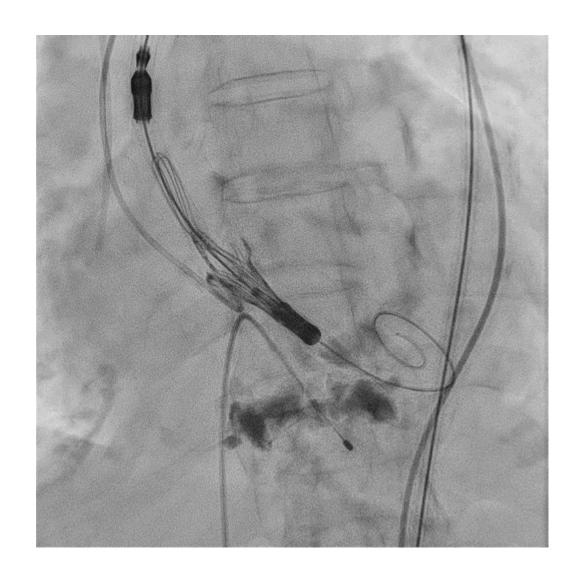
LVOT Perimeter: 70.8mm (LVOT Diameter: 22.5mm)

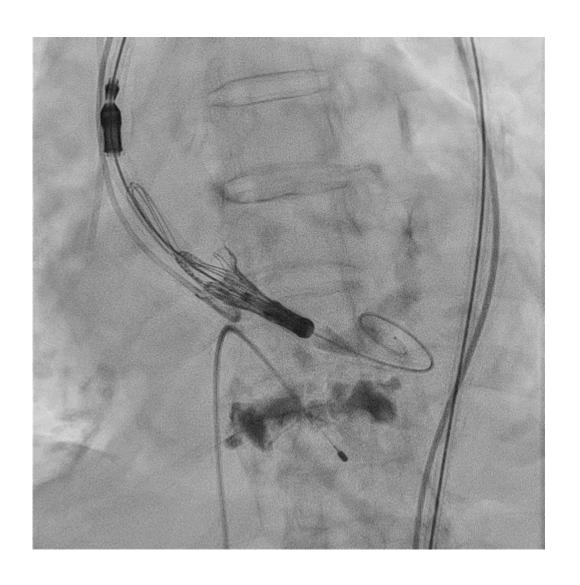
SOV: 30.8mm, STJ: 23.0mm

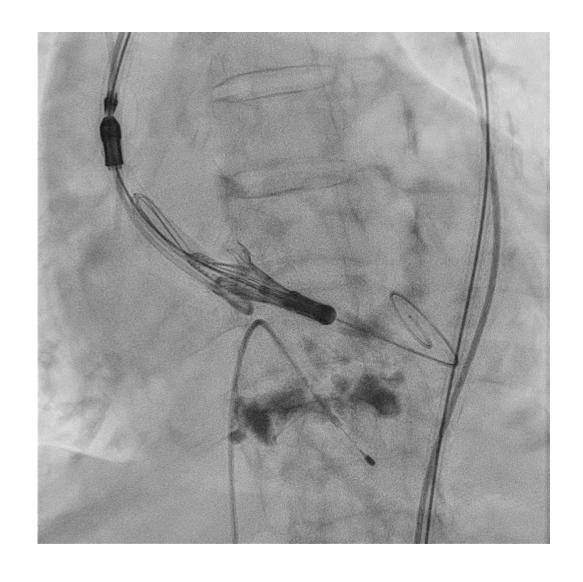

Coronary height: Lt. = 11.5mm, Rt. = 12.9mm

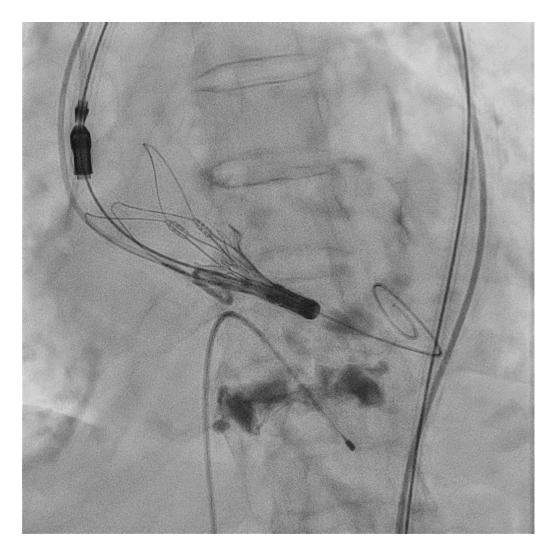

3 Cusp view: LAO 12° CAU 10°

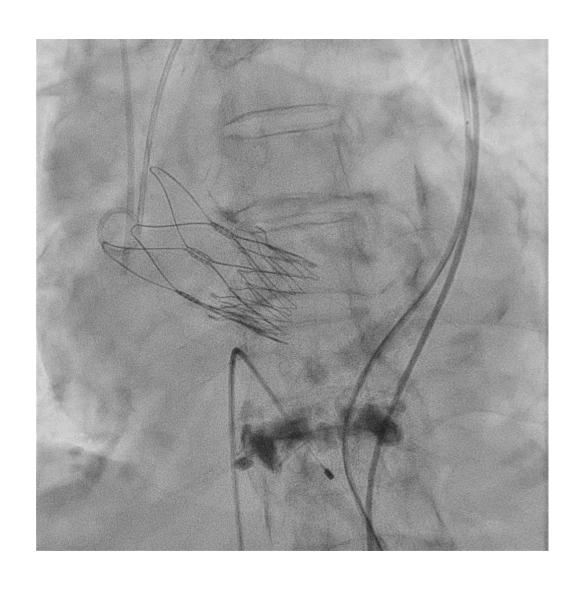
Ascending aorta: 35.2mm


Aorta angulation: 64°


Valve Size	\$ – 23 mm	M – 25 mm	L – 27 mm	
Aortic annulus diameter*	21 mm ≤ annulus ≤ 23 mm	23 mm < annulus ≤ 25 mm	25 mm < annulus ≤ 27 mm	
Aortic annulus perimeter	66 mm ≤ annulus ≤ 72 mm	72 mm < annulus ≤ 79 mm	79 mm < annulus ≤ 85 mm	




22(21)mm Atlas Gold balloon



Upward movement

Step2

Conclusions

1. Lowest PPI rate
Yes

- 2. Single digit gradients and Large EOAs Yes
- 3. Upgraded active PVseal technique to decrease PVL Yes (60% larger sealing skirt compared to previous generation)
- 4. Unrestricted coronary access Yes
- 5. Smooth deliverability even in severe angulated horizontal aorta