

Insights into Rota, Super High-Pressure Balloon, and

Optimal Device Choices in Severe Calcified Lesions

Kambis Mashayekhi, MD Heart Center Lahr, Germany

Disclosure

• Speaker: Dr. Kambis Mashayekhi

☑ I have the following potential conflicts of interest to declare:

- Personal: None
- Institutional:

Speaker honoraria, consultancy fees, and research grants from Abbott, Abiomed, Asahi Intecc, Astra Zeneca, Biotronik, Boston, Cardinal Health, Daiichi-Sankyo, Medtronic, Philips Healthcare Shockwave, SIS, Teleflex, Terumo.

Background

Prognostic implications of calcific CAD

- pooled analysis of 6,296 patients enrolled in 7 randomized clinical trials
- severe coronary calcification in 20% of patients with significantly elevated MACE rates

Background

Lesion preparation strategies for calcific CAD

Ablative techniques

Rotational atherectomy

Orbital atherectomy

Super high-pressure balloon

Cutting-/Scoring balloon

Balloon-based techniques

Intravascular lithotripsy

modification/ablation of the plaque composition to promote stentexpansion cracking of the calcium component to increase plaque elasticity and allow stentexpansion

TCTAP2024

Why prepare a calcified lesion?

- 1. To allow successful stent delivery
- 2. To allow adequate stent expansion
- 3. To prevent stent thrombosis and restenosis

Primary use of Rotablation for debulking

European expert consensus on rotational atherectomy

Figure 1. Number of publications over the years on coronary rotational atherectomy (source Pubmed).

Table 1. Rate of rotational atherectomy as function of total PCInumbers in some EU countries (source Boston Scientific).

Country	Rate (%)
United Kingdom	3.1
France	2.9
Spain	2.3
Austria	1.8
Portugal	1.5
The Netherlands	1.4
Italy	1.3
Belgium	1.3
Switzerland	1.1
Germany	0.8

Barbato E, EuroIntervention. 2015;11(1):30-36.

Primary use of Rotablation for debulking

Rota Registry Bad Krozingen: 16317 PCIs, 597 Rotablations (3,6%)

	2015	2016	2017	2018	2019
% of Rota in PCI	1,60%	1,97%	3,27%	4.71%	6,92%
Numbers of Rota	56	66	105	113	11
Numbers of RotaPro	0	0	0	30	216
Burr Size used					
1,25mm	30,3%	30,3%	31,4%	25,0%	8,3%
1,5mm	46,4%	24,2%	32,6%	45,8%	49,7%
1,75mm	10,7%	27,2%	29,2%	25,0%	34,7%
2,0mm	12,5%	18,2%	6,7%	4,2%	6,2%

Newer plaque modification possibilities

Rotablation / Shockwave / Super-High-Pressure

Feasibility and outcome of the Rotapro system in treating severely calcified coronary lesions: The Rotapro study

	Total number (n=597)	Rotapro (n=246)	Rota (n=351)	P value
Primary endpoint % (n)				
In-hospital MACCE	(29) 4.9%	(9) 3.7%	(20) 5.7%	0.254
Mortality	(15) 2.5%	(6) 2.4%	(9) 2.6%	0.923
MI Type 4a	(4) 0.7%	(17) 0.4%	(3) 0.9%	0.647
TVR	(20) 3.4%	(7) 2.9%	(13) 3.7%	0.566
Stroke	(17) 0.2%	(0) 0.0%	(17) 0.3%	1.000
Secondary procedural endpoints %	% (n)			
Technical success	(589) 98.7%	(244) 99.2%	(345) 98.3%	0.385
Procedural Success	(568) 93.8%	(237) 95.5%	(331) 92.6%	0.318
Procedural time (min)	88 [62 – 132]	82.5 [57 – 119]	96 [67 -146.5]	0.0003*
Fluoroscopy time (min)	34 [23 – 56]	30 [21 – 50]	38 [25 - 63.5]	0.0001*
Contrast volume used (ml)	250 [180 – 350]	210 [160 -300]	290 [150 - 380]	0.0001*
Dose Area Product (cGy*cm2)	8011 [4758 – 14062]	6129.5 [3563 – 9939]	9827 [6098 – 16402]	0.0001*
Major Complications % (n)				
Pericadiocentesis	(8) 1.3%	(2) 0.8%	(6) 1.7%	0.348
Vascular access complication	(13) 2.1%	(8) 3.45%	(5) 1.46%	0.206

Ayoub M, ...Mashayekhi K.Cardiol J. 2021 Oct 21.

Patients with/without rotablation in the Bad Krozingen CTO DATABASE: 2789 patients with CTO PCI in stable Angina during 5 years (2015-2019)

	CTO with Rotablation	CTO without Rotablation	
Total number of patients (%)	193 (6.9%)	2596 (93.1%)	2789 (Patients)
Rota	106 (55%)		
RotaPro	87 (45%)		
History of CABG	60 (33.5%)	417 (16.7%)	<0.0001
Procedural time in min.	127 [94-186]	81 [51-126]	<0.0001
Fluoroscopy time in min.	54 [35-80]	35 [20-60]	<0.0001
Contrast volume in cc	310 [200-400]	260 [190-390]	0.0032
Radiation dose in mGy	1339 [806-2353]	1762 [1231-2555]	0.24
Tamponade	6 (3.1%)	13 (0.5%)	<0.0001
In-hospital MI SCAI	24 (12.5%)	142 (5.6%)	<0.0001
In-hospital MI 4a	3 (1.6%)	47 (1.8%)	0.80
In-hospital MACCE	8 (4.2%)	72 (2.8%)	0.27
3-year MACCE	45 (23.3%)	554 (21.3%)	0.52

TCTAP2024

Ayoub... Mashayekhi, J Clin Med. 2023;12(10):3510

Patients with/without rotablation in the Bad Krozingen CTO DATABASE: 2789 patients with CTO PCI in stable Angina during 5 years (2015-2019)

Ayoub... Mashayekhi, J Clin Med. 2023;12(10):3510

Sex-Based Differences in Rotational Atherectomy and Long-Term Clinical Outcomes

Table 3. Clinical outcome	95.				Table 4. Univariate and m Cox regression analysis.	nultivariat	e predictors of	3-year MA	CCEs in	total cohort a	assessed by
Clinical Outcomes	All Patients (<i>n</i> = 597)	Women (<i>n</i> = 121)	Men (<i>n</i> = 476)	<i>p</i> Value	a: Co	x Regres:	sion Analysis f	or Predictor	s of MAC	CCEs	
In-hospital MACCEs	20 (3.3%)	7 (5.8%)	13 (2.7%)	0.095		ι	Jnivariate Anal	ysis	Μ	lultivariate An	alysis
In-hospital Mortality	15 (2.5%)	5 (4.1%)	10 (2.1%)	0.202		HR	95% CI	n Value	HR	95% CI	<i>p</i> Value
In-hospital MI										_	0.76
In-hospital TVR	Afte	er adj	ustme	ent,	he temale sex	k ha	as no	ot be	eer) –	0.80
In-hospital Stroke		-									<0.001
In-hospital TLR	confi	rmed	to he	an i	ndenendent ri	isk	fact	or fo	or t	he	0.92
Perforation		mca				USIX			/ 1 1		0.44
Pericardiocentesis			4	<pre>c</pre>						-	
Bleeding		ľ	ate o	t IVI <i>A</i>	CCEs after R	A P	CI.			-	alveie
eGFR max. post-Rota	00.0 ± 21	03.9 ± ∠1	/U.0 ± 22	0.002		ЦВ	05% CI	n Value	ЦВ	0.5% CI	n Value
1-year MACCEs	130 (21.8%)	24 (19.8%)	106 (22.3%)	0.562	· · · · · · · · · · · · · · · · · · ·	HK	95% CI	<i>p</i> value	нк	95% CI	p value
3-year MACCEs	155 (25.96%)	32 (26.45%)	123 (25.84%)	0.018	Age (change per year)	1.06	1.03–1.10	<0.001	1.04	1.01–1.07	0.03
					Gender (female)	1.82	1.07–3.10	0.03	1.42	0.79–2.56	0.24
eGFR = estimated gl	omerular filtration rat	te, MACCEs = r	najor adverse ca	ardiac and	ACS	5.10	3.11-8.37	<0.001	2.33	1.58–3.43	<0.001
cerebrovascular events	s, MI = myocardial infa	arction, TLR = tar	get lesion revasc	ularization,	Diabetes mellitus	1.27	0.76–2.14	0.37	1.22	0.73–2.22	0.47
I VK = target vessel rev	vascularization.				History of CABG	1.06	0.61–1.85	0.84	1.27	0.8–1.67	0.40

TCTAP2024

Ayoub,.....Mashayekhi. J Clin Med. 2023;12(15):5044

Safety and Long-Term Outcomes of Rotablation in Patients with Reduced (<50%) Left Ventricular Ejection Fraction (rEF)

The Rota-REF Study

X

Table 4. Study endpoints, procedural results, and major complications in patients with rEF stratified for PCI and RA-PCI.

		LVEF < 50%				
	Total Number (<i>n</i> = 4941)	PCI (<i>n</i> = 4744)	Rota (<i>n</i> = 197)	<i>p</i> -Value		
Primary endpoint % (n)						
Procedural Success	93.10% (4600)	93.1% (4418)	92.4% (182)	0.687		
Technical success	96.1% (4748)	96% (4555)	98% (193)	0.482		
In-hospital MACCE	4% (200)	3.9% (185)	7.6% (15)	0.009 *		
Mortality	2.5% (125)	2.4% (116)	4.6% (9)	0.062		
MI SCAI	16.07% (785)	15.38% (751)	17.26% (34)	0.548		
TVR	3.4% (167)	3.3% (156)	5.6% (11)	0.080		
Stroke	0.26% (13)	0.25% (12)	0.5% (1)	0.411		
TLR	3.2% (160)	3.1% (149)	5.6% (11)	0.057		
1-year MACCE	18.84% (931)	18.74% (889)	21.32% (42)	0.364		
3-year MACCE	26.6% (1314)	26.6% (1262)	26.4% (52)	0.949		
No flow (TIMI 0)	0.5% (26)	0.5% (24)	1% (2)	0.27		
Slow flow (TIMI 1 or 2)	4.9% (244)	5% (239)	2.5% (5)	0.11		

X Table 4. Study endpoints, procedural results, and major complications in patients with rEF stratified for PCI and RA-PCI. LVEF < 50% Total Number PCI Rota p-Value (*n* = 4941) (n = 4744)(n = 197)Secondary procedural endpoints % (n) Procedural time (min) 44 (26-75) 42 (26–72) 100 (70-136.5) 0.0001 Fluoroscopy time (min) 16 (10-29) 16 (9.5–28) 39 (27-62.5) 0.0001 Contrast volume used (mL) 197.5 (150-270) 190 (150-260) 250 (182.5-345) 0.0001 Dose Area Product (cGy · cm²) 5991 (3635-9863) 5884.5 (3492-9669) 9137 (5516-15,921) 0.0001 Major Complications % (n) Pericardiocentesis 0.28% (14) 1.5% (3) 0.0008 0.23% (11) Vascular access complication 1.74% (63) 1.69% (60) 3.75% (3) 0.1608

TCTAP2024

Ayoub,... Mashayekhi, The Rota-REF Study. J Clin Med. 2023;12(17):5640.

FASTTRACK CLINICAL RESEARCH Interventional cardiology

Management strategies for heavily calcified coronary stenoses: an EAPCI clinical consensus statement in collaboration with the EURO4C-PCR group

Emanuele Barbato (a) ¹*, Emanuele Gallinoro (a) ², Mohamed Abdel-Wahab (a) ³, Daniele Andreini (a) ^{2,4}, Didier Carrié (a) ⁵, Carlo Di Mario (a) ⁶, Dariusz Dudek⁷, Javier Escaned (a) ⁸, Jean Fajadet⁹, Giulio Guagliumi¹⁰, Jonathan Hill¹¹, Margaret McEntegart^{12,13}, Kambis Mashayekhi¹⁴, Nikolasos Mezilis¹⁵, Yoshinobu Onuma^{16,17}, Krzyszstof Reczuch¹⁸, Richard Shlofmitz (a) ¹⁹, Giulio Stefanini²⁰, Giuseppe Tarantini (b) ²¹, Gabor G. Toth²², Beatriz Vaquerizo (b) ²³, William Wijns²⁴, and Flavio L. Ribichini²⁵

AND/OR Additional Stenting

TCTAP2024

Ultra-High-Pressure Balloon OPN NC (SIS Medical)

SIS MEDICAL 40atm	SIS MEDICAL 55atm
Inflation Device	Inflation Device
For standard and high pressure PTCA up to 40 atm	For super high pressure PTCA up to 55 atm

OPN NC – Clinical Evidence

• The OPN NC can result in successful expansion of lesions and stents in which other standard noncompliant balloons have failed.

Raja Y., Routledge H. and Doshi S. A Noncompliant, High Pressure Balloon to Manage Undilatable Coronary Lesions. Catheterization and Cardiovascular Interventions 75:1067–1073 (2010).

 Our group recently reported the safety and efficacy of OPN balloons for treatment with DES of highly resistant coronary lesions nonresponsive to conventional NC balloon inflation. Postdilatation with high pressure NC OPN balloon did not cause any BVS strut disruption.

Fabris E., Caiazzo G., Kilic I., Serdoz R., Secco G., Sinagra G., Lee R., Foin N. and Di Mario C. Is High Pressure Postdilation Safe in Bioresorbable Vascular Scaffolds? Optical Coherence Tomography Observations after noncompliant Balloons Inflated at More than 24 Atmospheres. Catheterization and Cardiovascular Interventions (2015).

The OPN NC high pressure balloon is a plain rapid exchange PTCA catheter which can be easily used in case of the failure of conventional balloons, providing a
safe and easy alternative strategy in case of failure of conventional NC balloon dilatation.

Secco G., Ghione M., Mattesini A., Dall'Ara G., Ghilencea L., Kilickesmez K., De Luca G., Fattori R., Parisi R., Marino P., Lupi A., Foin N. and Di Mario C. Very high pressure dilatation for undilatable coronary lesions: indications and results with a new dedicated balloon. EuroIntervention (2015).

 BVS are the future of coronary intervention but have to be implanted properly. Therefore, good pre- and post-dilatation using highly non-compliant balloons such as the OPN NC is necessary in order to achieve maximal luminal area and good scaffold expansion as well as to avoid scaffold thrombosis. Cuculi F. Lesion preparation for bioresorbable scaffolds (and DES). (2015).

• Noncompliant high-pressure balloon, (the OPN NC balloon) may still be considered preliminary to DES implantation in case of undilatable ISR lesions due to unexpanded stents or severe calcified intra stent neoatherosclerosis.

Moscarella E., Ielasi A., Cortese B. and Varricchio A. Coronary In-stent restenosis: Where are we Now? Ann Vasc Med Res 3(2): 1033 (2016).

Good pre- and post-dilatation needs to be performed in order to achieve maximal scaffold expansion and full apposition. After aggressive post-dilatation with a
OPN NC balloon at 35atm, a much better expansion of the scaffold can be observed.

Jamshidi P., Nyffenegger T., Sabti Z., Buset E., Toggweiler S., Kobza R. and Cuculi F. A novel approach to treat in-stent restenosis: 6- and 12-month results using the everolimus-eluting bioresorbable vascular scaffold. EuroIntervention; 11:1479-1486 (2016).

2016

2015

OPN NC – Clinical Evidence

2017	The OPN NC is a very interesting alternative to the classical noncompliant balloons, minimizing the risk of a restenosis or thrombosis. The double balloon technology ensures a uniform expansion of the balloon without dog-boning effect and therefore reduces the risk of vessel wall damage
	Karsenty, B. Lésion résistante. Place du ballon à très hautes pressions OPN NC. CathLab, No 39, 10-11 (2017).
2019	The unique possibility offered by the OPN super high-pressure dedicated balloon provides an effective, easy and safety strategy for treatment of resistant coronary lesions non-responsive to conventional NC balloon dilatation. Secco G., Buettner A., Parisi R., Pistis G., Vercellino M., Audo A., Chen J., Castriota F., Garbo R., Marino P., Di Mario C. Clinical Experience with Very High Pressure Dilatation for Resistant Coronary Lesions. Catheterization and Cardiovascular Interventions.
2020	Proof that the OPN NC is safe and superior to all other devices used for the treatment for calcified lesions. OPreNBiS Study. Optimal Lesion Preparation With Non-compliant Balloons Before Implantation of Bioresorbable Scaffolds
In prog.	A prospective randomized controlled trial of Super High-Pressure NC PTCA Balloon (OPN NC) versus Scoring PTCA Balloon (NSE Alpha) in severely calcified coronary lesions. The aim of the study is to show superiority in terms of effectiveness and outcome of the OPN NC vs. Scoring Balloons. ISAR Calc. all patients enrolled; Published.
Planned	OPeNIndia registry. Post market surveillance registry; up to 1,000 patients. Start in Q1/2019; expected finalization by the end of 2020.
	In stent restenosis treatment by use of OPN NC.

The ISAR-CALC randomized trial

Study flow

Inclusion criteria

- Age above 18 years and consentable
- Persistent angina despite optimal medical therapy and/or evidence of inducible ischemia
- Angiographically-proven coronary artery disease
- **De-novo lesion** in a native coronary artery
- Target reference vessel diameter between
 2.25 and 4.00 mm by visual estimation
- Severe calcification of the target lesion as determined by visual estimation at angiography
- Unsuccessful lesion preparation with standard non-compliant balloon (<30% reduction of baseline diameter stenosis at maximal pressure)
 - Written informed consent

Exclusion criteria

- Myocardial infarction (within 1 week)
- Target lesion is located in a coronary artery bypass graft
- Target lesion is an in-stent restenosis
- Target lesion is aorto-ostial
- Target vessel thrombus
- Limited long-term prognosis due to other conditions

The ISAR-CALC randomized trial

Conclusions

- High strategy success rates with ballon-based techniques
- Super high-pressure balloon versus scoring balloon led to comparable stent expansion as assessed with OCT imaging
- Trend towards improved angiographic performance with super high-pressure balloon (increased final MLD and reduced residual stenosis)
- Relevant rates of peri-procedural complications and adverse clinical events up to 30 days reflect the procedural complexity

Rheude et al. EuroIntervention 2020

ISAR-CALC trial Patients with severely calcified coronary lesions planned for PCI with DES after unsuccessful lesion preparation with conventional non-compliant balloon 74 patients randomized 1:1 at 5 centers Twin-layer Nylon Technology construction coring element 1.5-4.5/10-20 2.0-4.0/13 Diameter/length, range (mm) Rated burst pressure (Atm) 35 14

[#]TCTAP2024

Use of Super High Pressure Balloon in Complex Percutaneous Coronary Interventions

Results of an Expert Registry 2015 - 2020

	Overall	Total	OPN	Total	NC	Duclus	
Vanable	(n=15.812)	number	(n=529)	number	(n=15.283)	P value	
Technical Success	99.6%	551	99.3%	15220	87.2%	0.255	
Procedural Success	97.7%	517	97.7%	14924	86.2%	0.904	
Procedural Time (min)	40 (24, 68)		65 (41, 106)		40 (24, 66)	<0.0001*	
Fluoroscopy Time (min)	15 (9, 25)		25 (15, 43)		15 (9, 25)	<0.0001*	
Contrast Volume (mL)	190 (150, 250)		220 (160, 300)		190 (150, 250)	<0.0001*	
Dose Area Product (cGy*cm2)	5317 (3144, 8823)		7400 (4101, 13287)		5284 (3125, 8688)	<0.0001*	
MACE (4th Univ. Def. MI)	1.9%	8	1.5%	299	2.0%	0.467	
Death	1.2%	4	0.8%	181	1.2%	0.534	
Stroke	0.1%	0	0.0%	19	0.1%	1.000	
Acute MI (4th Univ. Def.)	0.3%	1	0.2%	39	0.3%	1.000	
TLR	1.7%	7	1.3%	262	1.7%	0.494	
TVR	1.8%	8	1.5%	280	1.8%	0.589	
Pericardial Tamponade							
Requiring Treatment	0.3%	0	0.0%	44	0.3%	0.405	
Vascular Access Complication	1.5%	7	2.3%	171	1.5%	0.253	
Bleeding	2.4%	14	2.8%	351	2.4%	0.539	
Perforation	0.9%	9	1.7%	123	0.8%	0.026*	
30-day MACE	1.0%	13	2.5%	150	1.0%	0.001*	
1-year MACE	11.9%	109	20.6%	1771	11.6%	<0.0001*	
Mashayekhi, unpublished data 2024							

Results of an Expert Registry

Distribution of maximum OPN NC balloon pressures

Conclusion

- Ablative and balloon-based techniques are commonly used for plaque modification of calcified lesions
- The utilization of atherectomy techniques is continuously increasing
- Rotablation is a safe and effective technique, resulting in an effective debulking of calcified plaque
- Balloon-based techniques are effective for cracking deep calcified plaques
- Clinical data of super-high-pressure balloon angioplasty demonstrating efficiency and safety
- Finally, all plaque modification tools are complementary and necessary in the armamentarium of every complex PCI operator

