

Comparison of IVUS-guided vs. Angiography-guided Angioplasty for the Outcomes of DCB in the Treatment of Femoropopliteal Artery Disease

on behalf of IVUS-DCB Investigators

Young-Guk Ko, MD.

Professor, Division of Cardiology Severance Cardiovascular Hospital Yonsei University, Seoul, Korea

• This study was funded by Medtronic Inc. and Korea United Pharmaceutical, and supported by the Cardiovascular Research Center, Seoul, Korea.

 Drs. YG Ko and D Choi received research grants from Medtronic, Korea United Pharm, Cook Medical, Boston Scientific, Otsuka Korea, Dong-A ST, Samjin Pharm, and Cordis.

Background

- Drug-coated balloons (DCBs) have demonstrated favorable clinical outcomes in treating femoropopliteal artery disease.
- However, challenges such as vessel recoil, residual stenosis, and arterial dissection remain significant limitations of DCB treatment .
- Thus, improved vessel preparation and post-DCB optimization are needed to enhance endovascular treatment (EVT) outcomes.
- Intravascular ultrasound (IVUS) provides detailed information on vessel dimensions and plaque characteristics.
- However, there have been limited clinical data on the clinical benefit of IVUS in the EVT of femoropopliteal artery disease using DCBs.

^{20*} TCTAP2024 Zeller T, EuroIntervention 2022;18:e940. Lee SJ, J Am Coll Cardiol Intv. 2023;16:1640. Allan RB, J Am Coll Cardiol Intv. 2022;15(5):536

To investigate the clinical advantages of IVUS-guided DCB angioplasty for femoropopliteal artery disease by comparing the outcomes of IVUS-guided versus angiography-guided DCB angioplasty.

Study Design

Institutions and Investigators

Severance Hospital, Seoul, Korea

Young-Guk Ko, Seung-Jun Lee, Chul-Min Ahn, Donghoon Choi

- NHIS Ilsan Hospital, Goyang, Korea
 Ji Yong Jang
- Sejong General Hospital, Incheon, Korea
 Tae-Hoon Kim, Ha-Wook Park
- Chungnam National University Hospital, Daejeon, Korea Jae-Hwan Lee, Jae-Hyeong Park
- Busan Veterans Hospital, Busan, Korea Su Hong Kim
- Yongin Severance Hospital, Yongin, Korea Eui Im
- Soonchunhyang University Cheonan Hospital, Cheonan, Korea Sang-Ho park

Miyazak

Oki Islands

Honshu

Kitakyush

Key Inclusion & Exclusion Criteria

Inclusion criteria

- Age ≥19 years
- Symptomatic femoropopliteal artery disease (Rutherford 2~5)

Exclusion criteria

- Acute limb ischemia
- Age >85 years
- Life expectancy <1 year
- Previous bypass surgery or stenting in the target femoropopliteal artery
- Untreated inflow lesions

Primary & Secondary Endpoints

• Primary endpoint:

 Primary patency defined as the absence of clinically-driven target lesion revascularization (CD-TLR) or binary restenosis on imaging studies (DUS, CT, angiography) at 12-month follow-up.

Secondary endpoints:

- Freedom from CD-TLR
- Sustained clinical improvement (improved Sx ≥1 Rutherford category, no CD TLR)
- Sustained hemodynamic improvement (improved ABI ≥ 0.15, no CD TLR)
- Mortality
- Major amputations
- Major bleeding

Eur Heart J. 2007;28:798

Procedures

- Randomization was performed after successful wire passage
- All lesions were routinely predilated except for cases treated with vessel prep using atherectomy.
- Pretreatment and post lesion optimization as well as the choice of device sizes were left to operators' discretion.
- IVUS was performed before and after the use of DCBs and the final treatment.
- No specific IVUS goals were recommended for the IVUS-guidance group.
- All lesions were treated with IN.PACT DCBs.
- DAPT was required for at least 90 days post procedure.
- All procedural and follow-up images were analyzed at central core labs by independent experts.

Baseline Clinical Characteristics

	IVUS Guidance	Angiography Guidance	
	(n=119)	(n=118)	P value
Age, years	69.0 ± 9.1	70.2 ± 8.6	0.31
Men	102 (85.7)	100 (84.7)	0.98
Body mass index, kg/m ²	23.8 ± 3.4	23.4 ± 3.1	0.32
Hypertension	94 (78.0)	99 (83.8)	0.44
Diabetes mellitus	71 (59.7)	79 (67.5)	0.26
Dyslipidemia	84 (70.6)	86 (72.9)	0.80
Chronic kidney disease	29 (24.4)	19 (16.1)	0.16
End-stage kidney disease on dialysis	14 (11.8)	8 (6.8)	0.27
Current smoker	37 (31.1)	41 (34.7)	0.76
CAD	45 (37.8)	31 (26.3)	0.08
Prior stroke	14 (11.8)	14 (11.9)	0.99
Prior peripheral revascularisation	18 (15.1)	18 (15.3)	0.99
Prior limb amputation	5 (4.2)	4 (3.4)	0.99
Clinical presentation			
Claudication	89 (74.8)	86 (72.9)	0.66
CLTI	39 (25.2)	32 (27.1)	
Pre-procedural ABI	0.64 ± 0.21	0.63 ± 0.21	0.74

TCTAP2024

Lesion Characteristics

	IVUS Guidance (n=119)	Angiography Guidance (n=118)	P value	
TASC II lesion type				
A/B	39 (32.8)	40 (33.9)	0.06	
C/D	80 (67.2)	78 (66.1)	0.90	
Lesion length, mm	204.9 ± 103.1	214.5 ± 102.9	0.48	
Reference vessel diameter, mm	5.0 ± 0.7	5.0 ± 0.7	0.79	
Minimal lumen diameter, mm	0.36 ± 0.65	0.47 ± 0.68	0.20	
Total occlusion	78 (66.7)	68 (58.1)	0.23	
Severe calcification (PACCS grade 4)	38 (31.9)	30 (25.4)	0.34	
Popliteal involvement	11 (9.2)	10 (8.5)	>0.99	
Poor distal runoff (0 or 1 vessel)	30 (25.2)	36 (30.5)	0.44	

TCTAP2024

Procedural Data

	IVUS Guidance (n=119)	Angiography Guidance (n=118)	P value
Subintimal approach	31 (26.5)	31 (26.5)	>0.99
Atherectomy	41 (35.0)	38 (32.5)	0.78
Pre-balloon diameter, mm	<mark>5.0 ± 0.9</mark>	<mark>4.5 ± 1.1</mark>	<mark><0.001</mark>
Pre-balloon length, mm	122.3 ± 57.5	119.1 ± 62.8	0.69
Pre-balloon maximal pressure, mmHg	<mark>11.8 ± 3.6</mark>	<mark>8.9 ± 2.7</mark>	<mark><0.001</mark>
Total number of DCBs	2.0 ± 0.8	2.0 ± 0.8	0.75
Maximal DCB diameter, mm	5.8 ± 0.7	5.8 ± 0.7	0.95
Mean DCB diameter, mm	5.4 ± 0.6	5.4 ± 0.6	0.92
Adjuvant post-dilatation	<mark>31 (26.1)</mark>	<mark>16 (13.6)</mark>	<mark>0.03</mark>
Maximal post-balloon pressure, mmHg	<mark>13.7 ± 2.9</mark>	<mark>9.6 ± 4.0</mark>	<mark>0.001</mark>
Bailout stenting	24 (20.5)	17 (14.5)	0.30
Post-procedural minimal lumen diameter, mm	3.90 ± 0.59	3.71 ± 0.73	0.03
Post-procedural diameter stenosis, %	21.5 ± 12.0	25.4 ± 13.3	0.02

TCTAP2024

Immediate Procedural Outcomes

	IVUS	IVUS Angiography	
	Guidance	Guidance	P value
	(11=113)	(11=110)	
Technical success*	91 (76.5)	72 (61.0)	0.02
Procedural success [†]	88 (73.9)	71 (60.2)	0.03
Dissection type	70 (59.8)	68 (58.1)	0.67
A	8 (10.7)	15 (20.3)	
В	35 (46.7)	29 (39.2)	
С	20 (26.7)	18 (24.3)	
D	5 (6.7)	5 (6.8)	
E	2 (2.7)	1 (1.4)	
Distal embolisation	0	0	—
Target lesion perforation	1 (0.9)	1 (0.9)	>0.99
Access site complications	2 (1.7)	2 (1.7)	>0.99
Post-procedure ABI	0.99 ± 0.13	0.93 ± 0.15	0.001

*defined as residual stenosis of <30% without flow compromise; †defined as technical success without any acute complications

Clinical Outcomes at 12 months

	Event No. / Total. No (%)		Dick Differencea	Hazard Datiah	
Outcomes	IVUS (n=119)	Angiography (n=118)	(95% CI)	(95% CI)	value
Primary endpoint					
Primary patency*	83.8 (83/99)	70.1 (68/97)	13.7 (2.1 – 25.4)	0.46 (0.25–0.85)	0.01
Secondary endpoints					
Freedom from CD TLR	92.4 (110/119)	83.0 (98/118)	9.4 (1.1 – 17.7)	0.41 (0.19-0.90)	0.03
Sustained clinical improvement	89.1 (106/119)	76.3 (90/118)	12.8 (3.3 – 22.3)	0.45 (0.23-0.86)	0.02
Sustained hemodynamic improvement	82.4 (98/119)	66.9 (79/118)	15.4 (4.5 – 26.3)	0.52 (0.31-0.89)	0.02
Major amputation of target limb	0/119	0/118	_	_	_
All-cause death	6.7 (8/119)	7.6 (9/118)	-0.9 (-7.5 - 5.7)	1.21 (0.44–3.34)	0.72
Cardiovascular death	2.5 (3/119)	2.5 (3/118)	0.0 (-4.0 - 4.0)	1.45 (0.29–7.24)	0.65
Major bleeding	1.7 (2/119)	2.5 (3/118)	-0.9 (-4.5 - 2.8)	0.69 (0.11–4.18)	0.61

*Imaging follow-up rate at 12 months: 82.7%

²⁰ TCTAP2024

Primary patency at 12 months

TCTAP2024

Freedom from CD-TLR

TCTAP2024

Primary Patency According to TASC II Lesion Types

Severance Cardiovascular Hospital

TCTAP2024

Predictors of Restenosis

	Univariate		Multivariate			
			Model 1		Model 2	
	HR (95% CI)	P-value	HR (95% CI)	P-value	HR (95% CI)	P-value
Lesion length ≥200 mm	2.96 (1.50-5.87)	0.002	2.36 (1.14-4.91)	0.02	2.15 (1.07-4.34)	0.03
Total occlusion	2.32 (1.12-4.84)	0.02	1.43 (0.62-3.29)	0.40	1.59 (0.69-3.70)	0.28
Subintimal recanalization	2.57 (1.42-4.64)	0.001	1.91 (1.02-3.60)	0.04	1.43 (0.73-2.80)	0.30
Use of IVUS	0.46 (0.25-0.85)	0.01	0.40 (0.21-0.75)	0.004	-	-
Post-procedural MLD (per 0.1 mm decrease)	1.14 (1.09-1.20)	<0.001	-	-	1.13 (1.07-1.18)	<0.001

^{23*} TCTAP2024

Conclusions

- IVUS guidance significantly improved the outcomes of DCB angioplasty for FPA disease in terms of primary patency, freedom from CD TLR, and sustained clinical and hemodynamic improvement at 12 months.
- The benefit of IVUS guidance for primary patency after DCB treatment was more evident in complex FPA lesions.

