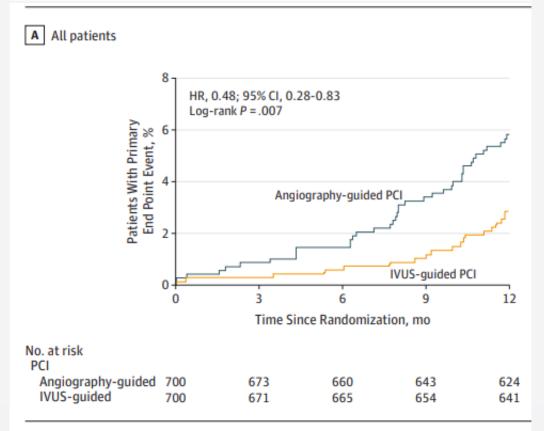
IVUS-guided PCI with Everolimus-Eluting Stents or Bypass Surgery for Multivessel Coronary Artery Disease: Post-hoc Analysis of the BEST Extended Follow-up Study

Jinho Lee, MD, PhD Assistant Professor

Department of Cardiology, Kyung Hee University Hospital, Seoul, Korea

Disclosure

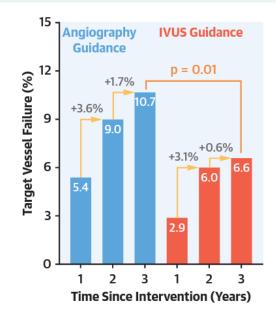

• I, Jinho Lee, have NO conflict of interest related to this presentation

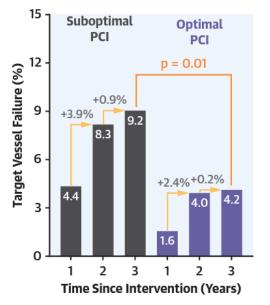
Background

- Previous studies
- Intravascular ultrasonography (IVUS)- guided percutaneous coronary intervention (PCI) improved clinical outcomes compared with coronary angiography (CAG)-guided PCI in complex coronary artery disease

Effect of Intravascular Ultrasound-Guided vs Angiography-**Guided Everolimus-Eluting Stent Implantation**

The IVUS-XPL Randomized Clinical Trial


Cumulative incidence curves for the primary end point of cardiac death, target lesion-related myocardial infarction, and target lesion revascularization. HR indicates hazard ratio; IVUS, intravascular ultrasound; PCI, percutaneous coronary intervention.


3-Year Outcomes of the ULTIMATE Trial Comparing Intravascular Ultrasound Versus Angiography-Guided **Drug-Eluting Stent Implantation**

Xiao-Fei Gao, MD,^{a,*} Zhen Ge, MD,^{a,*} Xiang-Quan Kong, PhD,^{a,*} Jing Kan, MBBS,^a Leng Han, MD,^b Shu Lu, MD,^c Nai-Liang Tian, MD, a Song Lin, MD, Qing-Hua Lu, MD, Xiao-Yan Wang, MD, Qi-Hua Li, MD, Zhi-Zhong Liu, PhD, A Yan Chen, MD, Xue-Song Qian, MD, Juan Wang, MD, Da-Yang Chai, MD, Chong-Hao Chen, MD, Tao Pan, MBBS, Fei Ye, MD, Jun-Jie Zhang, MD, PhD, Shao-Liang Chen, MD, PhD, for the ULTIMATE Investigators

CENTRAL ILLUSTRATION 3-Year Follow-Up of the IVUS-Guided Drug-Eluting Stents **Implantation in All-Comers Coronary Lesions Trial**

Gao, X.-F. et al. J Am Coll Cardiol Intv. 2021;14(3):247-57.

RESEARCH SUMMARY

Intravascular Imaging-Guided or Angiography-Guided Complex PCI

Lee JM et al. DOI: 10.1056/NEJMoa2216607

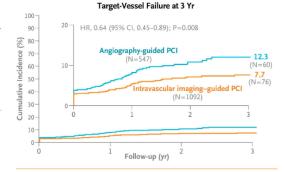
CLINICAL PROBLEM

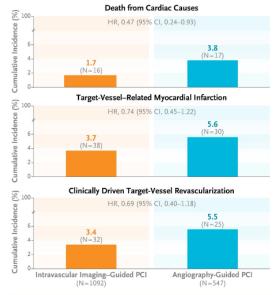
During percutaneous coronary intervention (PCI), guidance with intravascular imaging, with the use of intravascular ultrasonography or optical coherence tomography (OCT), can optimize stent implantation. However, for patients with complex coronary-artery lesions, data regarding clinical outcomes after intravascular imaging–guided PCI as compared with outcomes after angiography-guided PCI are limited.

CLINICAL TRIAL

Design: A prospective, multicenter, open-label, randomized trial in South Korea evaluated whether intravascular imaging–guided PCI would result in better clinical outcomes than angiography-guided PCI in adults with complex coronary-artery lesions.

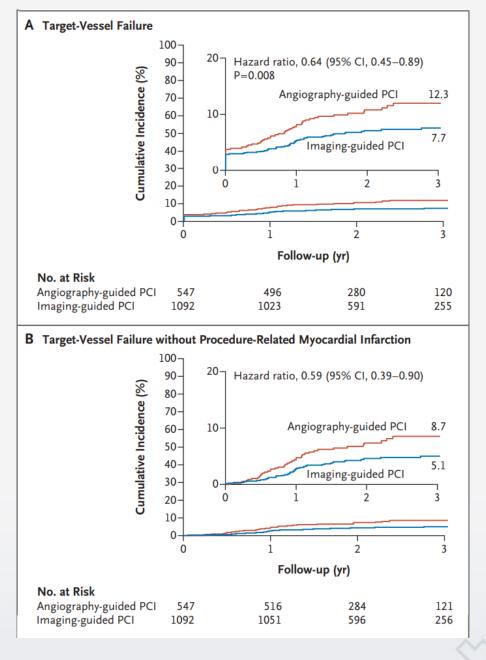
Intervention: 1639 patients were assigned in a 2:1 ratio to undergo either intravascular imaging—guided PCI, with the use of ultrasonography or OCT, or angiography-guided PCI. The primary end point was target-vessel failure, which was defined as a composite of death from cardiac causes, target-vessel—related myocardial infarction, or clinically driven target-vessel revascularization.


RESULTS


Efficacy: At a median follow-up of 2.1 years, the incidence of target-vessel failure was lower in the intravascular imaging group than in the angiography group.

Safety: The incidence of procedure-related complications during the index hospitalization appeared to be similar in the two groups.

LIMITATIONS AND REMAINING QUESTIONS


- The trial was unblinded, and the operator could not be unaware of the patient's assigned group.
- Stent optimization as defined on the basis of intravascular imaging occurred in less than half the patients.
- All the patients were East Asian, and more than half the patients were enrolled at one trial center, which potentially limits the generalizability of the findings.

CONCLUSIONS

Among patients with complex coronary-artery lesions, intravascular imaging–guided PCI led to a lower incidence of a composite of death from cardiac causes, target-vessel–related myocardial infarction, or clinically driven target-vessel revascularization than angiography-guided PCI.

2021 ACC/AHA Guideline

Recommendations for Use of Intravascular Imaging
Referenced studies that support the recommendations are
summarized in Online Data Supplement 25.

C	OR	LOE	Recommendations
2	la	B-R	 In patients undergoing coronary stent implan- tation, IVUS can be useful for procedural guidance, particularly in cases of left main or complex coronary artery stenting, to reduce ischemic events.¹⁻¹⁰
2	ła	B-R	 In patients undergoing coronary stent implan- tation, OCT is a reasonable alternative to IVUS for procedural guidance, except in ostial left main disease.¹¹⁻¹³
2	la .	C-LD	In patients with stent failure, IVUS or OCT is reasonable to determine the mechanism of stent failure. 14-17

2018 ESC Guideline

Recommendations	Classa	Level ^b
IVUS or OCT should be considered in selected patients to optimize stent implantation. 603,612,651-653	lla	В
IVUS should be considered to optimize treatment of unprotected left main lesions. ³⁵	lla	В

2021 ACC/AHA Guideline

Recommendations for Patients With Complex Disease Referenced studies that support the recommendations are summarized in Online Data Supplement 13.							
COR LOE Recommendations							
1	B-R	In patients who require revascularization for significant left main CAD with high-complexity CAD, it is recommended to choose CABG over PCI to improve survival.					
2 a	B-R	 In patients who require revascularization for multivessel CAD with complex or diffuse CAD (eg, SYNTAX score >33), it is reasonable to choose CABG over PCI to confer a survival advantage.²⁻⁵ 					

2018 ESC Guideline

Recommendations according to extent of CAD	CABG		PCI		
	Classa	Level ^b	Classa	Level ^b	
One-vessel CAD					
Without proximal LAD stenosis.	IIb	U	-	С	
With proximal LAD stenosis. ^{68,101,139–144}	1	A	1	A	
Two-vessel CAD					
Without proximal LAD stenosis.	IIb	U	1	С	
With proximal LAD stenosis. 68,70,73	1	В	1	С	
Left main CAD					
Left main disease with low SYNTAX score (0 - 22). 69,121,122,124,145–148	1	A	1	A	
Left main disease with intermediate SYNTAX score (23 - 32). 69,121,122,124,145–148	1	A	lla	A	
Left main disease with high SYNTAX score (≥33). ^c ^{69,121,122,124,146–148}	1	A	Ш	В	
Three-vessel CAD without diabetes mellitus					
Three-vessel disease with low SYNTAX score (0 - 22). 102,105,121,123,124,135,149	1	A	1	A	
Three-vessel disease with intermediate or high SYNTAX score (>22).c 102,105,121,123,124,135,149	- 1	A	Ш	A	
Three-vessel CAD with diabetes mellitus					
Three-vessel disease with low SYNTAX score 0–22. 102,105,121,123,124,135,150–157	1	A	IIb	A	
Three-vessel disease with intermediate or high SYNTAX score (>22).c 102,105,121,123,124,135,150–157	1	A	101	A	

Method

- Sub-study of BEST Extended trial
- Prospective, Open-label, Multi-centered,
 Randomized trial
- Patients were enrolled between July 2008 to September 2013
- PCI with everolimus-eluting stent versus
 CABG in angiographic multivessel
 coronary artery disease

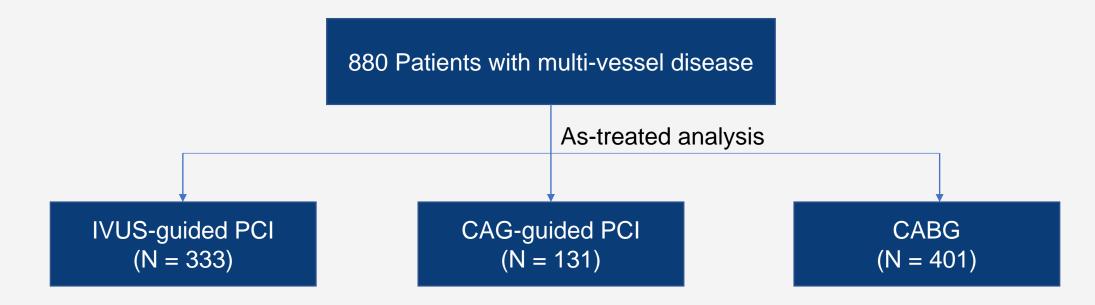
Circulation

Volume 146, Issue 21, 22 November 2022; Pages 1581-1590 https://doi.org/10.1161/CIRCULATIONAHA.122.062188

ORIGINAL RESEARCH ARTICLE

Everolimus-Eluting Stents or Bypass Surgery for Multivessel Coronary Artery Disease: Extended Follow-Up Outcomes of Multicenter Randomized Controlled BEST Trial

Jung-Min Ahn, MD (1) *, Do-Yoon Kang, MD (1) *, Sung-Cheol Yun, PhD, Seung Ho Hur, MD, Hun-Jun Park, MD (1) , Damras Tresukosol, MD, Woong Chol Kang, MD (1) , Hyuck Moon Kwon, MD, Seung-Woon Rha, MD, Do-Sun Lim, MD (1) , Myung-Ho Jeong, MD (1) , Bong-Ki Lee, MD, He Huang, MD, Young Hyo Lim, MD, Jang Ho Bae, MD, Byung Ok Kim, MD, Tiong Kiam Ong, MD (1) , Sung Gyun Ahn, MD, Cheol-Hyun Chung, MD, Duk-Woo Park, MD (1) , Seung-Jung Park, MD, PhD (1) , and for the BEST Extended Follow-Up Study Investigators



Method

- Among 880 patients with MVD enrolled in the BEST Extended Follow-up study
- As-treated Analysis
- 333 patients underwent IVUS-guided PCI
- 131 patients underwent CAG-guided PCI
- compared with 401patients underwent CABG
- during a median follow-up of 11.8 years
- The primary endpoint
 - the composite of death from any cause, myocardial infarction, or target-vessel revascularization

Method

median follow-up of 11.8 years

The primary endpoint

(the composite of death from any cause, myocardial infarction, or target-vessel revascularization)

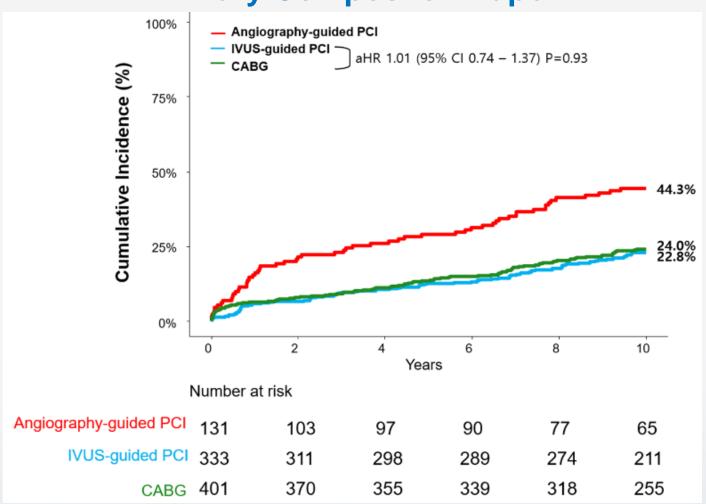
Baseline Characteristics of Patients

Clinical Characteristics	Angiography-guided PCI (n=131)	IVUS-guided PCI (n=333)	CABG (n=401)	P value	
Age	65.7 ± 10.0	63.7 ± 9.0	64.5 ± 9.4	0.12	
Male sex	84 (64.1)	233 (70.0)	301 (75.1)	0.04	
ВМІ	24.5 ± 3.7	24.9 ± 2.7	24.9 ± 2.8	0.30	
Medically treated diabetes	59 (45.0)	134 (40.2)	164 (40.9)	0.62	
Hypertension	95 (72.5)	217 (65.2)	265 (66.1)	0.29	
Hyperlipidemia	42 (32.1)	200 (60.1)	213 (53.1)	<0.001	
Current smoker	28 (21.4)	66 (19.8)	76 (19.0)	0.82	
Previous PCI	6 (4.6)	28 (8.4)	34 (8.5)	0.31	
Previous myocardial infarction	10 (7.6)	16 (4.8)	27 (6.7)	0.41	
Previous congestive heart failure	8 (6.1)	7 (2.1)	12 (3.0)	0.08	
Previous stroke	13 (9.9)	24 (7.2)	32 (8.0)	0.62	
Chronic renal failure	5 (3.8)	4 (1.2)	7 (1.7)	0.16	
Peripheral vascular disease	6 (4.6)	10 (3.0)	10 (2.5)	0.47	
Chronic obstructive pulmonary disease	4 (3.1)	3 (0.9)	6 (1.5)	0.23	
Clinical presentation				0.006	
Stable angina	46 (35.1)	173 (52.0)	186 (46.4)		
Unstable angina	62 (47.3)	134 (40.2)	182 (45.4)		
Recent acute myocardial infarction	23(17.6)	26(7.8)	33 (8.2)		
Ejection fraction	58.6 ± 10.6	59.5 ± 7.4	59.7 ± 8.3	0.42	

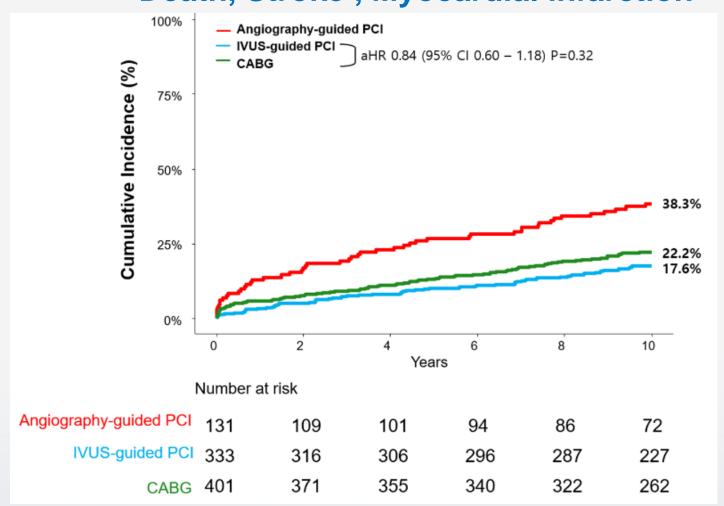
TCTAP2024

• Baseline Characteristics of Patients, According to Study Group.

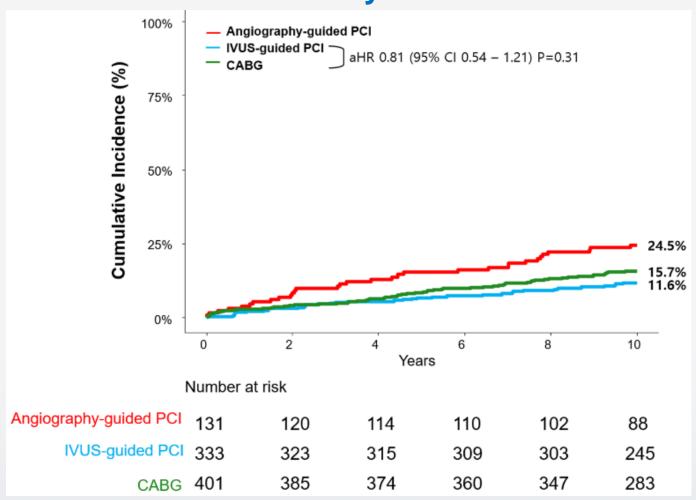
Characteristics	Angiography-guided PCI	IVUS-guided PCI	CABG	P value
Cital acteristics	(n=131)	(n=333)	(n=401)	r value
Diseased vessels				0.03
Three vessel disease	102 (77.9)	242 (72.7)	324 (80.8)	
Two vessel disease	29 (22.1)	91 (27.3)	77 (19.2)	
сто	26 (19.8)	104 (31.2)	130 (32.4)	0.02
Bifurcation	45 (34.4)	210 (63.1)	247 (61.6)	<0.001
Heavy calcified lesion	38 (29.0)	111 (33.3)	118 (29.4)	0.46
EuroSCORE ≥ 6	29 (22.1)	32 (9.6)	46 (11.5)	0.001
SYNTAX score	22.2 ± 7.4	24.9 ± 7.4	25.5 ± 7.9	<0.001



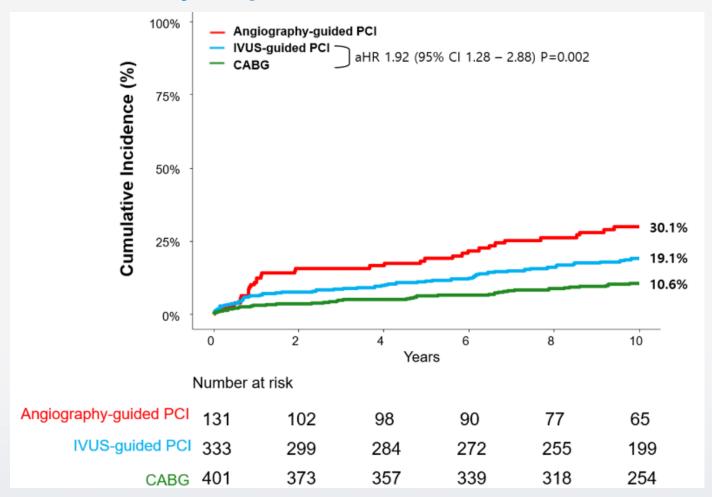
• Procedural Characteristics of Patients Among 3 groups


Characteristics	Angiography-guided PCI (n=131)	IVUS-guided PCI (n=333)	CABG (n=401)	P value
Complete revascularization	70 (53.4%)	166 (49.8%)	274(68.3%)	<0.001
Number of stents	3.13 ± 1.28	3.47 ± 1.47	NA	0.03
Total length of stents	71.62 ±31.12	91.2 ± 39.54	NA	<0.001
Stent diameter, mm	3.00 ± 0.35	3.23 ± 0.28	NA	<0.001
Total number of Graft	NA	NA	3.09	NA
LIMA to LAD	NA	NA	398 (99.3)	NA
Off-pump CABG	N	NA	205 (51.1)	NA

Primary Composite Endpoint



Death, Stroke, Myocardial infarction



Death from Any Cause

Any Repeat Revascularization

• Primary and Secondary Outcome at Long-Term Follow-up according to IVUS guidance

Outcomes	Treatment	Number of events (%)	cHR	Univariate analysis 95% Cl		-110	Multivariate analysis 95% CI			
				Lower	Upper	P value	aHR	Lower	Upper	P value
Primary	Angiography-guided PCI	58 (44.3%)	2.190	1.579	3.036	<0.001	2.131	1.501	3.026	<0.001
Endpoint	IVUS-guided PCI	75 (22.8%)	0.933	0.689	1.263	0.654	0.985	0.722	1.343	0.922
Death, MI, TVR	CABG (reference)	95 (24.0%)	1 (ref)				1(ref)			
	Angiography-guided PCI	50 (38.3%)	1.950	1.378	2.760	<0.001	1.976	1.363	2.864	<0.001
Death, Stroke, or MI	IVUS-guided PCI	58 (17.6%)	0.764	0.549	1.065	0.112	0.848	0.604	1.191	0.341
	CABG (reference)	88 (22.2%)	1 (ref)				1(ref)			
	Angiography-guided PCI	32 (24.5%)	1.665	1.087	2.551	0.019	1.571	0.993	2.488	0.054
Death from any cause	IVUS-guided PCI	38 (11.6%)	0.721	0.482	1.080	0.113	0.818	0.540	1.239	0.343
	CABG (reference)	62 (15.7%)	1 (ref)				1 (ref)			
	Angiography-guided PCI	36 (30.1%)	3.253	2.068	5.119	<0.001	3.154	1.960	5.076	<0.001
Any RR	IVUS-guided PCI	60 (19.1%)	1.909	1.276	2.857	0.002	1.651	1.093	2.494	0.017
TCTAP202	CABG (reference)	39 (10.6%)	1 (ref)				1 (ref)			CVRE

Conclusion

Post-hoc analysis of the BEST extended follow-up trial,

IVUS-guided PCI would narrow the gap of treatment effect between PCI and CABG for the treatment of MVD

Suggesting the potential clinical benefit of routine IVUS use during PCI for MVD

Further larger randomized trials are warranted to confirm or refute these findings