^{29*} TCTAP2024

Reappraisal of Medina Classification on Bifurcation PCI in 2024

Yoshinobu MURASATO, MD, PhD National Hospital Organization Kyushu Medical Center, Fukuoka, Japan

Disclosure

Speaker's name : Yoshinobu MURASATO

✓ I have the following potential conflicts of interest to report:

Honoria: Medtronic, Abbott Medical, Boston Scientific, Kaneka, Orbus Neich

e-Ultimaster

- 37,198 patients, 50 countries
- 4,003 coronary bifurcation lesions (CBL)
- Intracoronary imaging 12%
- Worse clinical outcome in Medina 0-0-1 as in 1-1-1

0.0.1

14.0

14.7

14.6

Mohamed MO et al. J Am Heart Assoc. 2022;11(17):e025459.

TCTAP2024

BIFURCAT

Integrated analysis of COBIS II, III (Korea) and RAIN registry (Italy)

²⁰⁺ TCTAP2024

Integrated analysis of Japanese Bifurcation studies

J-REVERSE¹ IVUS-guidance 300 cases

3D OCT Registry² OCT-guidance 168 cases

PROPOT³ OCT-guidance 119 cases

Hazard ratio vs. Medina 0-1-0 lesion

		Medina	Hazard ratio	95%CI		P-value
	True CBL	1-1-1	1.87	0.79	4.44	0.16
		1-0-1	1.12	0.24	5.19	0.89
		0-1-1	2.03	0.78	5.29	0.15
	Non-true	1-1-0	1.87	0.79	4.45	0.16
	CBL	1-0-0	1.15	0.38	3.43	0.81
	0-0-1	0-0-1	4.14	1.27	13.50	0.02

Glider Registry⁴ IVUS /OCT guidance 201 cases

Integrated analysis 778 CBL cases IVUS-guidance 397 (51%) OCT-guidance 381 (49%)

Murasato Y et al. Int J Cardiol Heart Vasc. 2023;49:101311.

Distribution of Medina classification

PCI procedure

		e-Ultimaster	BIFURCAT	Japanese registry
2-stent	True CBL	37%		20%
	Non-true CBL	5%		3%
	0-0-1	12%	39%	9%
FKB or	True CBL			89%
strut openina	Non-true CBL			77%
op or	0-0-1		81%	86%
POT	True CBL	38%		45%
	Non-true CBL	32%		51%
	0-0-1	15%	31%	32%

More frequent 2-stent and FKB, and less POT in 0-0-1 lesion

MACE in Medina subclass

TLR in Medina subclass

CTAP2024

Discussion

- Imaging guidance improved clinical outcome in true CBL similar as in non-true CBL
 - Accurate assessment of SB lumen expansion and dissection
 - Appropriate pre-treatment according to plaque morphology and distribution
 - Optimal device size selection
 - Less 2-stent deployment
- Worse clinical outcome in 0-0-1 lesion
 - Angiographic non-significant MV lesion includes moderate plaque
 - Similar PCI treatment as in true CBL More 2-stent and FKB and less POT than in other non-true CBLs

Option in 0-0-1 lesion

- Proximal MV SB crossover stenting more TLR in LM-LCX crossover vs. LM-LAD crossover (18.2% vs. 3.0%) Naganuma T et al. Catheter Cardiovasc Interv. 82 (2013) 757–764.
- Stent deployment by nailing the SB ostium more TVR in LAD ostial nailing stent vs. LM-LAD crossover stenting (21.0% vs. 5.6%) Rigatelli G et al. Cardiovasc Revasc Med. 20 (2019) 1058–1062
- 3. DCB in 0-0-1 lesion

higher TLF rate vs. DCB in 0-1-0 lesion (14% vs. 6%) Kleber FX et al. Clin Res Cardiol. 105 (2016) 613–621 Vaquerizo BJ et al. Interv Cardiol. 29 (2016) 285–292

Specific anatomical feature promoting poor PCI outcome

Possible mechanism of worse outcome in 0-0-1 lesion

- Overtreatment of invaluable or non-ischemic SB without confirmation of functional ischemia or perfusion territory
- Wide bifurcation angle between proximal MV and SB More likelihood of rheological disturbance in SB
- Hinge motion in the bifurcation
- Angiographically non-significant MV with moderate plaque is ignored or injured during treatment with POBA.

- Prevent SB overtreatment
- Decrease stent number
- Care distal MV plaque injury

Conclusion

- Intra-coronary imaging contributed to reduce MACE in true CBL as in nontrue CBL except for 0-0-1 lesion.
- Despite of less frequent needs for treatment (3-4%), 0-0-1 lesion remained higher risk of TLR even under the imaging guidance.

Thank you for your attention !

