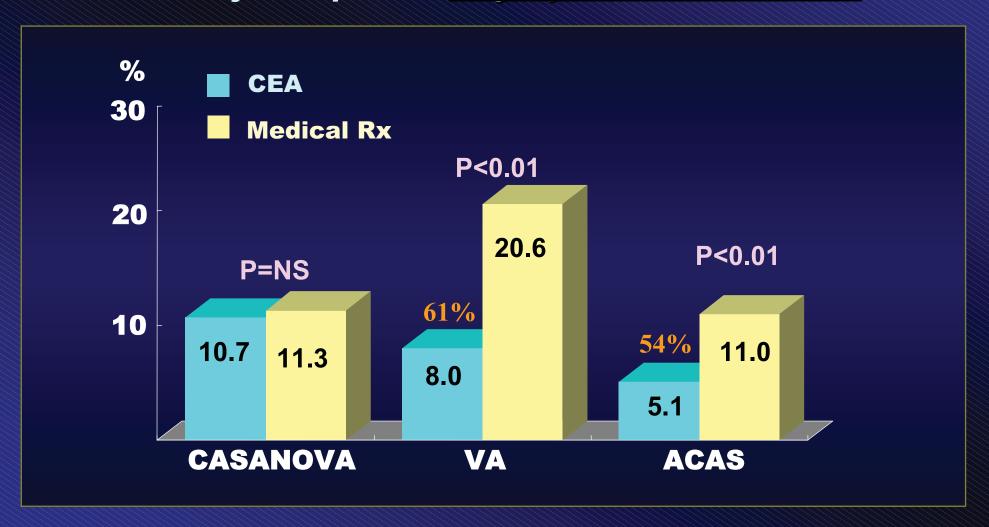
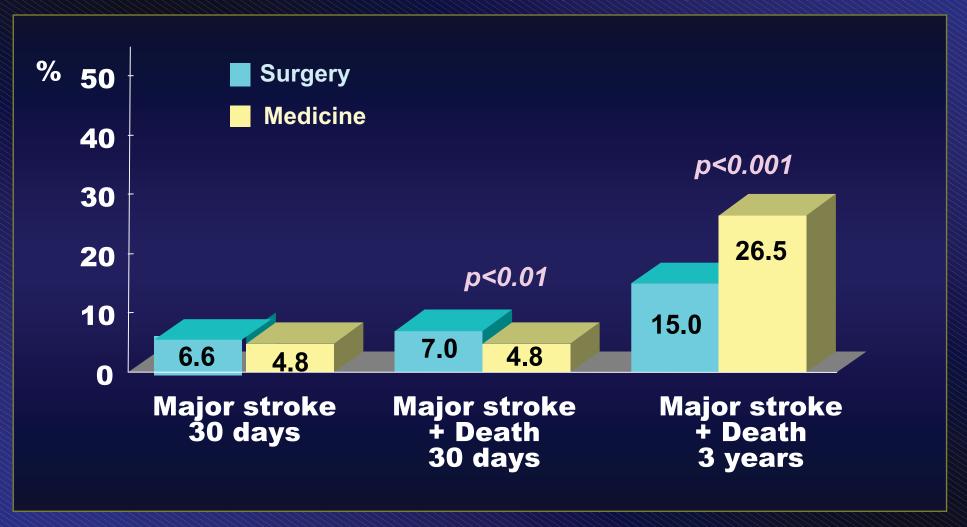

Carotid Artery Stenting In high risk patients

Seong-Wook Park, MD, PhD, FACC

Professor of internal medicine
Asan Medical Center, Seoul, kore


Surgery vs. Medical Management

Primary Endpoint: Symptomatic Patients


Surgery vs. Medical Management

Primary Endpoint: Asymptomatic Patients

Surgery vs. Medical Management

European Carotid Surgery Trial (n=3024)

Lancet 1998;351:1379-87

Limitations of CEA

- Despite years of experience, national average risk of perioperative stroke for low risk patient is ~6%
- Anatomic considerations
- Cranial nerve palsies (7~27%)
- Restenosis ~15%
- > 50% have severe coronary artery disease

High Anatomical Risk for CEA

- Contralateral occlusion
- High lesion / bifurcaitons
- Low or ostial common carotid lesions
- Neck radiation
- Prior radical neck dissection
- Prior carotid endarterectomy
- Short obese necks
- Spinal immobility due to congenital/acquired conditions
- Additional stenosis involving the ipsilateral Siphon

Carotid Stenting Potential Benefits

- Reduced complication rates
- Less invasive
- Can reach essentially all blockages
- Very low restenosis rate
- Rapid return to daily life

Carotid Stenting Contrandications

- Severely tortuous, calcified and atheromatous aortic arch vessels
- Pedunculated thrombus at the lesion site
- Severe renal impairment
- Recent stroke (3 weeks) ;should be placed on anticoagulants and antiplatelets for 1 month
- Unable to tolerate antiplatelet agents

Carotid Stenting Success & Complications

Study	Setting	N	Success	Stroke & TIA*	Death
Roubin (1996)	High risk	146	99%	6.2%	0.7%
Shawl (2000)	High risk	170	99%	2.9%	0%
Wholey (2000)	registry	5129	98.4%	4.21%	0.8%
Roubin (2001)	High risk	428	99%	4.6%	0.2%

^{*} Major stroke < 1%

Carotid Stenting Complication Rate

N=4757 pts, 36 major carotid centers, 1988-1997

TIAs	2.82 %
IIAS	Z.OZ /0

Minor Stroke 2.72 %

Major stroke 1.49 %

Deaths 0.86 %

Total stroke & death 6.29 %

6-mo ISR = 1.99%

12-mo ISR = 3.46%

Wholey MH, et al. CCI 2000;50:160-7

Carotid Stenting in High Risk Patients

Unfavorable CEA subsets

Anatomic high risk

- High(C2) carotid bifurcation
- Prior neck irradiation or radical neck dissection
- Restenosis following prior CEA
- Contralateral occlusion
- Ostial common carotid lesion
- Spine immobility

Surgical high risk

- Severe CAD
 - Not revascularized or awaiting CABG
- Class III or IV CHF
- Severe COPD
- Age > 80

Carotid Stenting In High Risk Patients

 Ineligible for CEA trials or referred by surgeons (n=170 pts)

Age, yrs	73 ± 8
Success rate	99 %
30-day stroke rate	2.9 %
19 months FU	
Restenosis	2 %
Stroke	0

Shawl, et al. JACC 2000;35:1721-8

Is Carotid Stenting Durable? Long-term Follow-up

6% Restenosis Rate

CAVATAS

Multicenter Randomized Trials: CEA vs. Endovascular treatment

	Angioplasty * N=251	CEA N=253
30-day death & stroke	6.4%	5.9 %
Cranial neuropathy	0 %	8.7 %
1-year restenosis	14 %	4 %

* Stenting = 26%

Lancet 2001;357:1729-37

Carotid Artery Stenting The Most serious of Complications Is

Cerebral Embolization!!

Cerebral EmbolizationHighest Risk

- Unstable plaque
 break down of fibrous cap
- Soft plaque
- Long stenosis string sign contains thrombus

Avoiding Distal Embolization

- Use cerebral protection device
- No pre-dilatation with a peripheral balloon
- No oversizing of balloon *
- Never use high pressures *
- Never try to dilate the stent to obliterate contrast filled ulcerated area external to the stent

Distal Device Protection

Distal occlusion

Filter

Theron balloon
PercuSurge Guardwire

MedNova NeuroShield

EPI filter

Angioguard filter

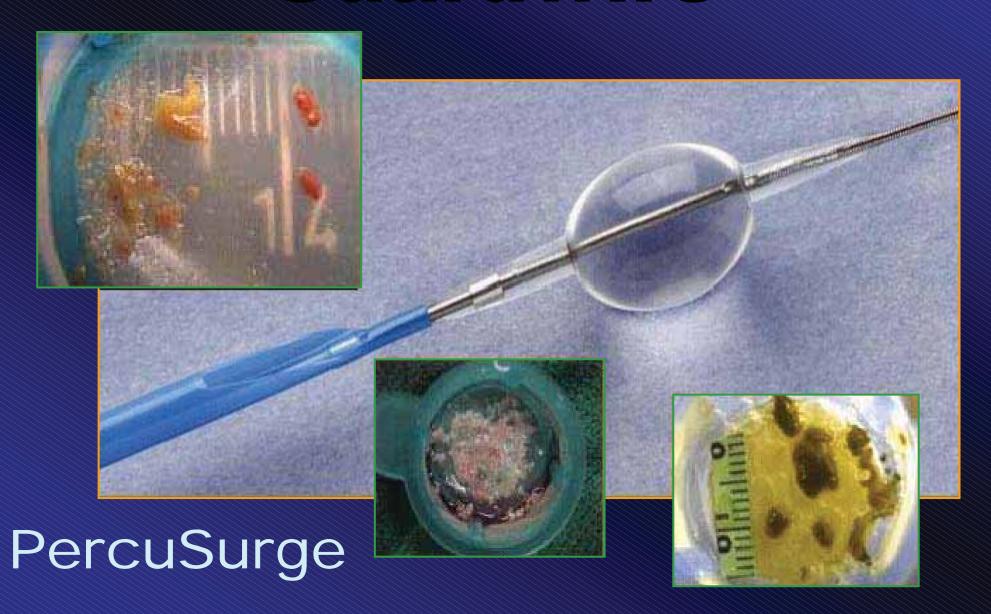
Medtronic filter

BSC Captura

Bate's Floating Filter

Accu-Filter

E-Trap


Microvena Trap

Proximal occlusion

Kachel balloon

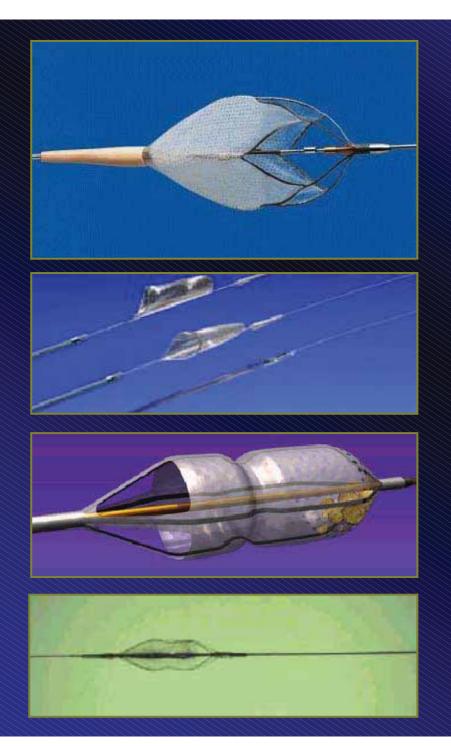
ArteriA Parodi Catheter

Guardwire®

Distal Occlusion balloon


Strength

- Mimics standard guidewire more than any filters
- Ability to cross lesion
- Particles of all sizes can be blocked (ICA)


Weakness

- Unprotected 1) during passage, 2) ECA, 3) incomplete suction
- Does not preserve ICA flow (can't be angio)
- May cause spasm/dissection in distal ICA
- Cumbersome procedure (cannot move wire during exchange, several added steps, aspiration)

Angioguard®

MedTronics

Guidant - ACCUNET

BSC - EPI

MedNova - Neuroshield

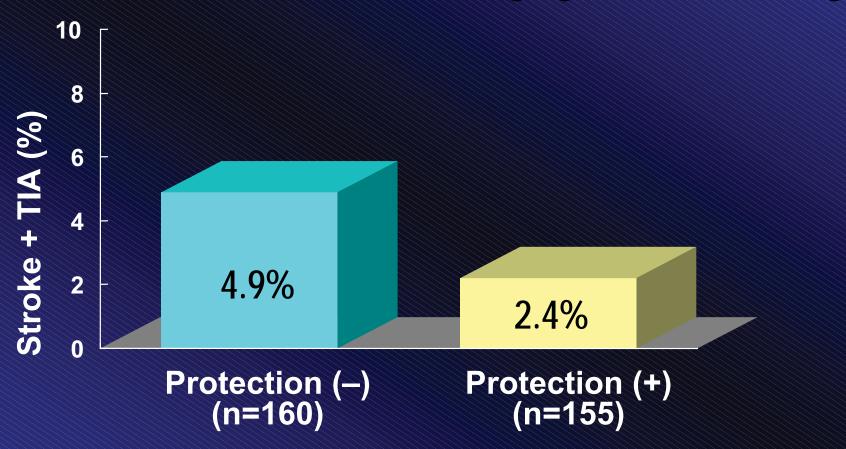
MedNova – Gen III

Distal Filter

Strength

- Intuitive
- Preserves ICA flow

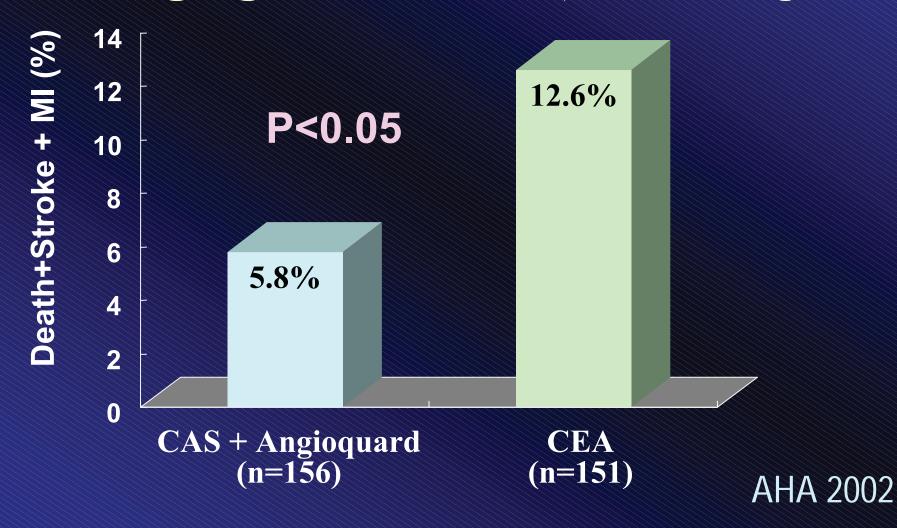
Weakness


- Not same as standare guidewire
- Larger profile, less flexible
- Frequent need to predilate (recross PTA site)
- Unprotected 1) during passage, 2) small particles, 3) flow around filter, 4) during filter retrieval
- May thrombose
- May cause spasm/dissection in distal ICA
- Cumbersome procedure (cannot move wire during exchange, several added steps)

The Ideal Protection System

- Does not cause harm
 - Complete protection
 - Capture efficiency
- Protection at all time for all particles
- Wide applicability
- User friendly

Effect of Protection Device


* Protection devices: Angioguard & PercuSurge

Henry M et al, Tex Heart Inst J 2000;27:150-8

SAPPHIRE-multicenter randomized

CAS+Angioguard vs. CEA, at 30 days

Effect of Protection Device

* Protection devices: Angioguard, PercuSurge & EPI

	Cerebral Protection	
	No (n=102)	Yes (n=142)
TCD-HITS	100%	100.0%
DW-MRI	29%	7.1%
TIA	8%	2.7%
Stroke	3%	1.3%
TIA + Stroke	11%	4%

K. Mathias et al, AJNR 2001