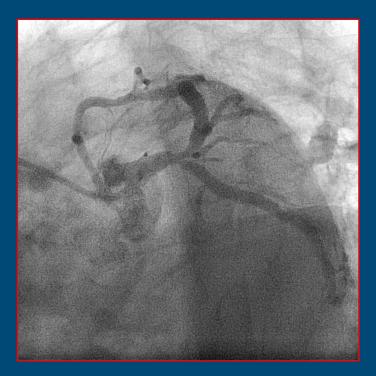
Bifurcation PCI: Contemporary Practical Approach

Jung-Min Ahn, MD

Heart Institute, Asan Medical Center, Ulsan University College of Medicine, Seoul, Korea





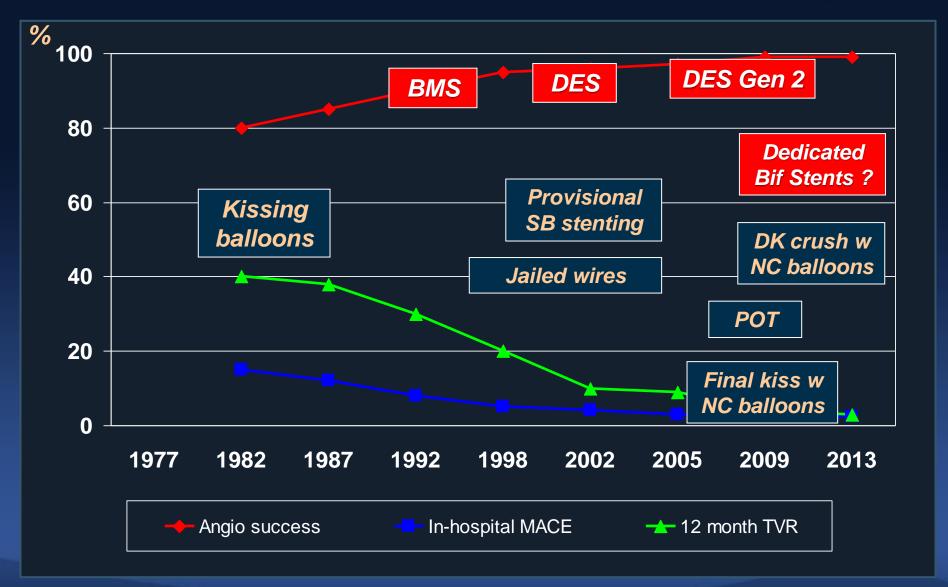
Bifurcation

Non-Left Main

CardioVascular Research Foundation

Bifurcation

Non-Left Main



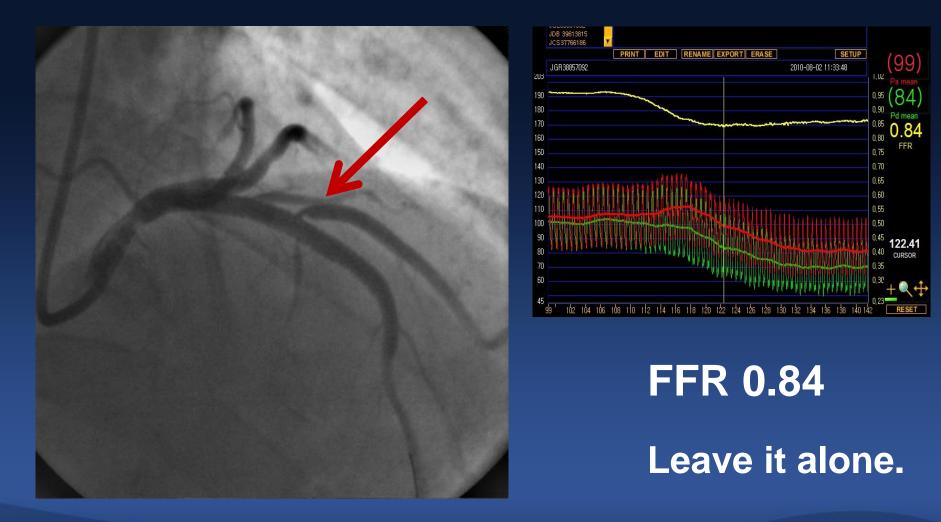
- Simple Cross Over?
- Two Stent Technique?
- Side Branch Protection?

Evolution of Bifurcation Therapy

CardioVascular Research Foundation

Courtesy of T. Lefevre

COLLEGE MEDICINE

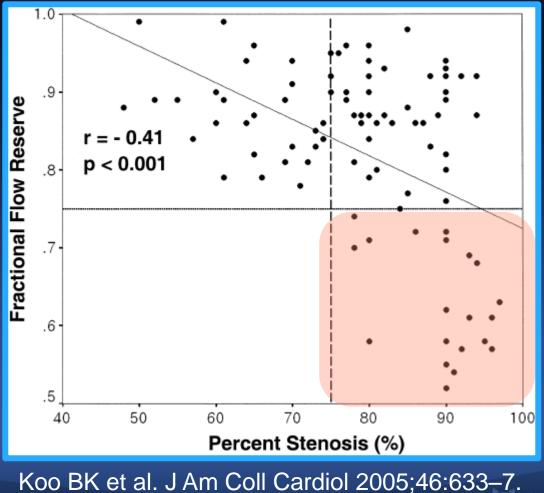

Meta-Analysis of 12 Major Studies, 6961 Pts *Provisional Single-Stenting is Better !*

A			DE			osi	S	с		My	/ OC			arct	ion
Study	Year	DDS	SDS	DDS better	SDS better	Weight*	RR (random) 95% CI	Study	Year	DDS	SDS	DDS better	SDS better	Weight*	RR (random) 95% Cl
RANDOMIZE	D. CONT	ROLLED	TRIALS					RANDOMIZE			TRIALS				
NORDIC	2008	1/196	2/199		⊢⊢	5.37%	0.50 (0.04-5.55)	NORDIC	2008	39/196	20/199		 _∔	16.86%	1.97 (1.19–3.26)
Ferenc et al.	2008	2/101	1/101		-	5.40%	2.00 (0.18-21.71)	Ferenc et al.	2008	2/101	1/101		1.	1.80%	2.00 (0.18-21.71)
CACTUS	2009	3/177	2/173			9.73%	1.46 (0.24-8.66)	CACTUS	2009	19/177	15/173	-		13.48%	1.28 (0.65–2.35)
BBC-ONE	2010	5/249	1/248	-		6.71%	4.97 (0.58-42.31)	BBC-ONE	2010	28/249	9/248			11.76%	3.09 (1.49–6.43)
DK-CRUSH-I	2011	4/185	1/185	-		6.45%	4.00 (0.45-35.44)	DK-CRUSH-II		6/185	4/185	_	-	5.59%	1.50 (0.43-5.22)
META-ANAL	YSIS	15/908	7/906		+		2.01 (0.77-5.23)	META-ANALY	SIS	94/908	49/906		•		1.88 (1.35-2.62)
Cochrane Q: 2.46 (p: 0.651) I ² : 0%						Cochrane Q: 3.5	59 (p: 0.4	453) I ² : 0%					,		
NONRANDO	MIZED, C	BSERVA	TIONAL S	TUDIES				NONRANDO	NIZED, (OBSERVA	TIONAL S	TUDIES			
Ge et al.	2007	3/57	0/117			3.54%	14.24 (0.74–271.13)	Ge et al.	2007	13/57	5/117			8.04%	5.33 (1.99-14.24)
Di Mario et al	2007	4/109	0/38			3.66%	3.19 (0.17-57.92)	Di Mario et al.	2007	7/109	2/38			4.01%	1.22 (0.26-5.62)
ARTS II	2007	1/61	4/263			6.50%	1.07 (0.12-9.47)	ARTS II	2007	3/61	16/263	_		5.94%	0.80 (0.24-2.68)
COBIS	2010	2/292	9/1376	_		13.17%	1.04 (0.22-4.82)	COBIS	2010	5/292	15/1376	_	1.	7.78%	1.57 (0.57-4.28)
J-CYPHER	2011	3/263	10/1870	-	- # -	18.64%	2.13 (0.59-7.70)	J-CYPHER	2011	6/263	39/1870	_		9.77%	1.09 (0.46-2.55)
J-PMS	2011	4/37	2/263			11.12%	14.21 (2.69–74.92)	J-PMS	2011	5/37	6/263			6.48%	5.92 (1.90-18.44)
Assali et al.	2011	2/141	3/260		.	9.72%	1.23 (0.21-7.27)	Assali et al.	2011	7/141	10/260	_		8.49%	1.29 (0.50-3.32)
META-ANAL	YSIS	19/960	27/4187		+		2.55 (1.13–5.78)	META-ANALY	SIS	43/960	93/4187				1.85 (1.03-3.32)
	Cochrane Q: 8.06 (p: 0.234) I ² : 25.57%						Cochrane Q: 12.79 (p: 0.041) I ² : 53.11%								
META-ANAL Cochrane Q: 1		34/1868 473) I ² : 0%			•	100%	2.31 (1.33–4.03)	META-ANALY Cochrane Q: 16			142/5093		•	100%	1.86 (1.34–2.60)
				0.01 0.1 RR (I	1 10 100 1 LOG SCALE)	1000						0.01 0.1 RR (1 10 100 LOG SCALE)	1000	
		Sing	gle-s	stent	Two-st	ent				Sin	gle-s	stent	Tw	o-ster	nt

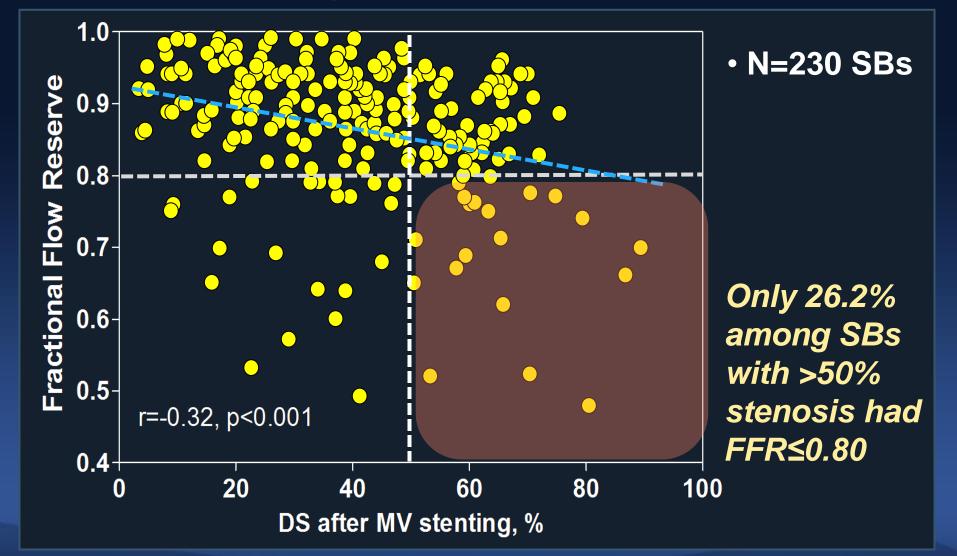
- No randomized trials had shown that two-stenting was superior to single-stenting.
- Provisional one stent cross over with jailed wire has been a standard strategy to treat non-LM bifurcation, even true bifurcation.

Zimarino et al. J Am Coll Cardiol Intv 2013;6:687–95

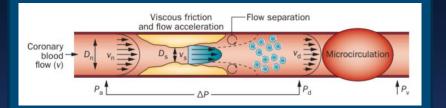
After Stenting at Main Vessel



FFR of the Jailed Side Branch


Among angiographic jailed side branches, functionally significant stenosis is not common.

CardioVascular Research Foundation


FFR of the Jailed Side Branch By Using Dedicated Bifurcation QCA

Park SJ, Ahn JM et al. JACC Cardiovasc Interv. 2012 Feb;5(2):155-61

Why? Determinants of FFR

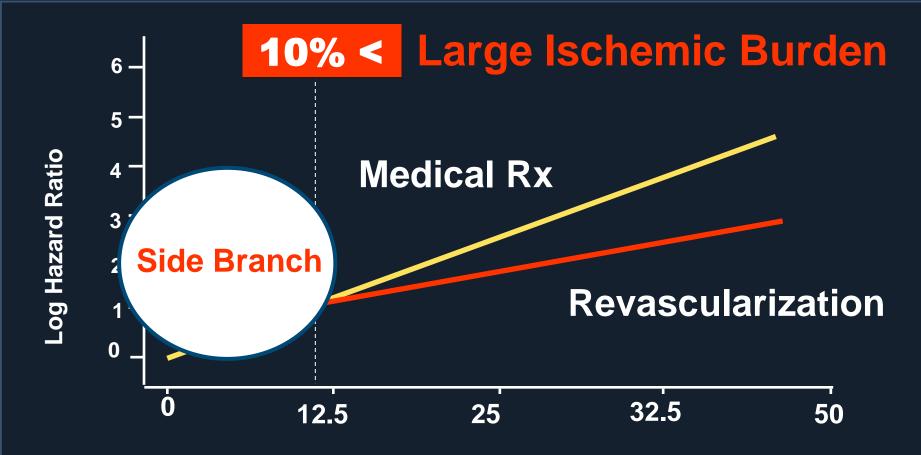
Stenosis


The pressure gradient across a stenosis is determined by the sum of viscous and separation losses.

 $\Delta P = Av + Bv^2$

The most-important geometric parameter is the minimum diameter of the stenosis

Nat. Rev. Cardiol. 10, 439–452 (2013)

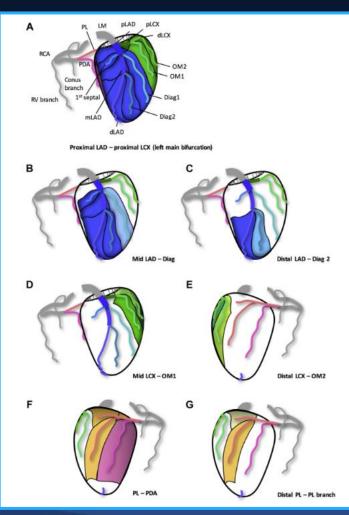

Myocardium

- Vascular territory on the FFR value
- Any given stenosis, Vascular territory TFR Vascular territory FFR

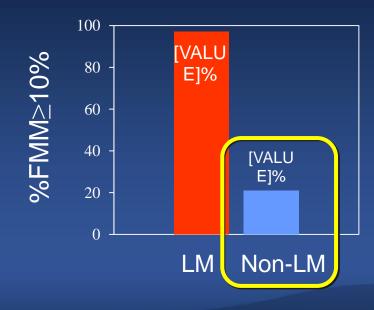
PLoS Med 15(11): e1002693

Survival Benefit of Revascularization

Total Myocardium Ischemic Burden (%)



Hachamovitch R, Circulation. 2003;107:2900-2906


Myocardial Mass Supplied by Side Branch

Fractional Myocardial Mass (FMM) Based on CT

Predictors of %FMM \geq 10%

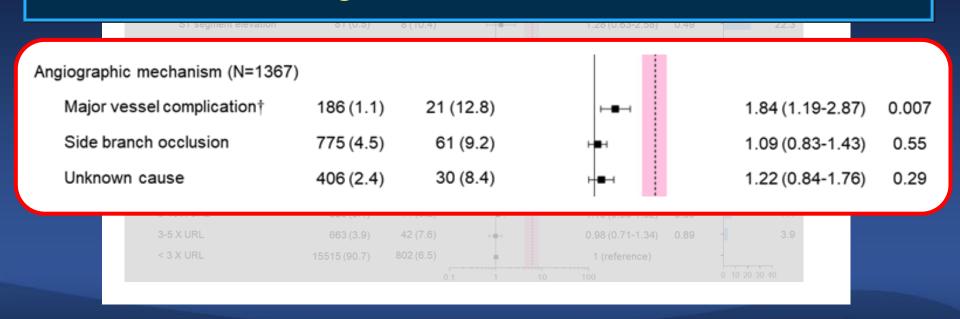
- Side branch length \geq 73mm
- Left main bifurcation

CardioVascular Research Foundation

J Am Coll Cardiol Intv 2017;10:571–81

Simple Calculation

Ischemia Extent: %FMM>10% in SB: 21% *Ischemia Severity:* FFR≤0.80 in SB: 26%


Clinically (Prognostically) Important SB is Only 5.5%

Peri-Procedural MI: Angiographic Complications

Side branch occlusion is not associated with longterm survival but main branch occlusion is associated with long-term survival after PCI.

Unpublished Data From Asan Medical Center

Symptomatically Important Side Branch

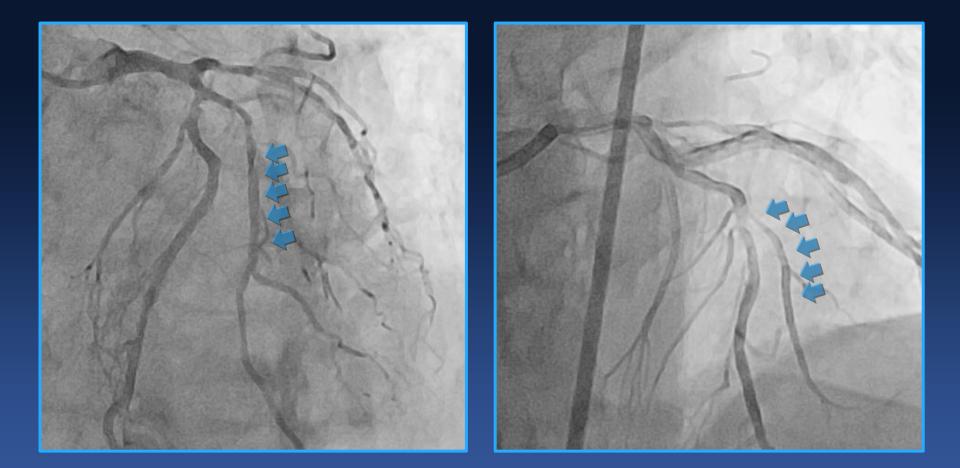
- Angina
- EKG change
- Arrhythmogenic potential

Balloon Occlusion

	LAD	Diagonal	p Value
Chest pain and ECG parameters, n = 65			
VAS pain score	5 (0-7)	2 (0-4)	< 0.0001
ST-segment elevation $\geq 1 \text{ mm}$	60 (92.3)	23 (35.4)	0.001
QTc interval, ms	454.0 ± 45.4	440.4 ± 35.7	0.07
QTc dispersion, ms	83.8 ± 39.2	70.7 ± 28.5	< 0.0001
Coronary hemodynamic parameters, n = 47			
Pre-intervention FFR	0.67 ± 0.10	0.71 ± 0.11	0.02
Pw, mm Hg	21.0 ± 6.5	26.7 ± 9.4	< 0.0001
Pw/Pa	$\textbf{0.22} \pm \textbf{0.07}$	$\textbf{0.27}\pm\textbf{0.08}$	0.001

Diagonal Br. Scoring

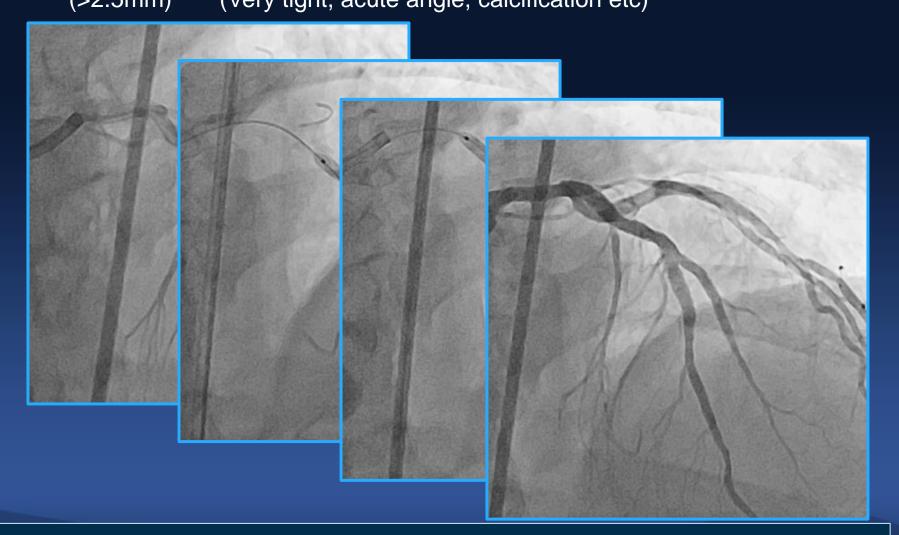
- Vessel Size ≥ 2.5mm
- No. of Dia. Br. ≤ 2
- No Br. Below



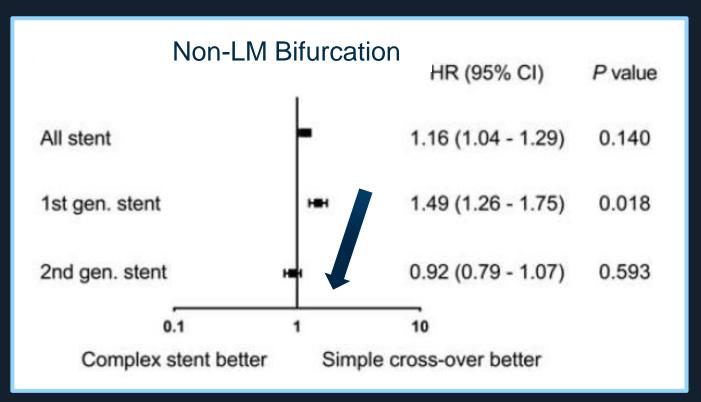
Koo BK et al. JACC: Cardiovascular Interventions Volume 5, Issue 11, Pages 1126-1132

ardioVascular Research Foundation

Less Important



When We Do Initial Two Stenting? Big SB, Hard to Re-Wire, to Avoid Pain (>2.5mm) (Very tight, acute angle, calcification etc)

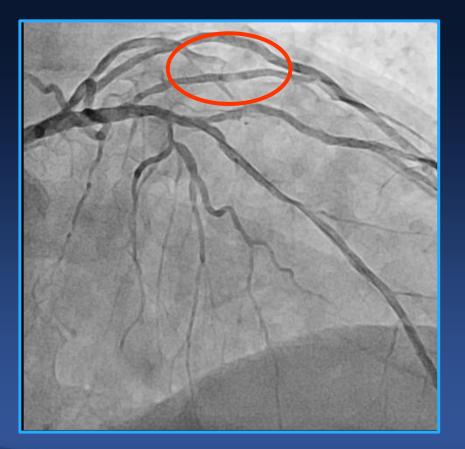


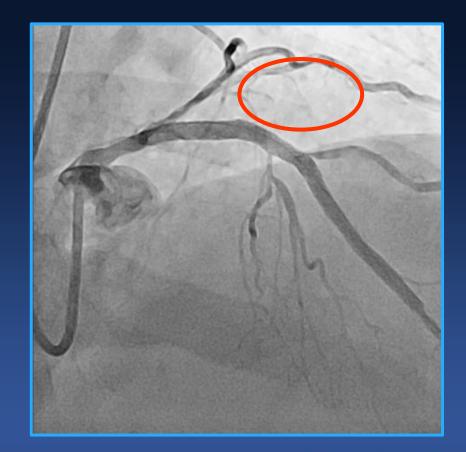
Not For Better Prognosis But For No Pain during PCI

Temporal Changes in Non-LM Bifurcation PCI Data from IRIS-DES and LM Registry

The Outcome of 2-Stenting Has Improved

Target-Vessel Failure



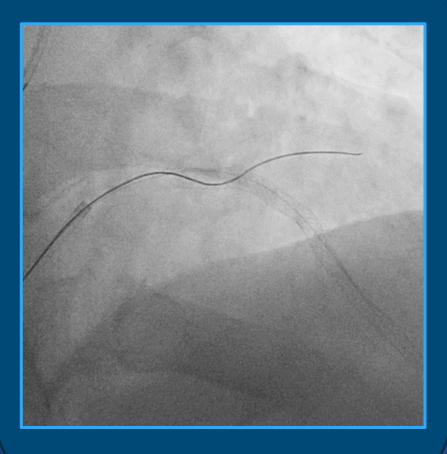

CardioVascular Research Foundation

Coron Artery Dis. 2019 Jan;30(1):33-43

ASAN Medical Center

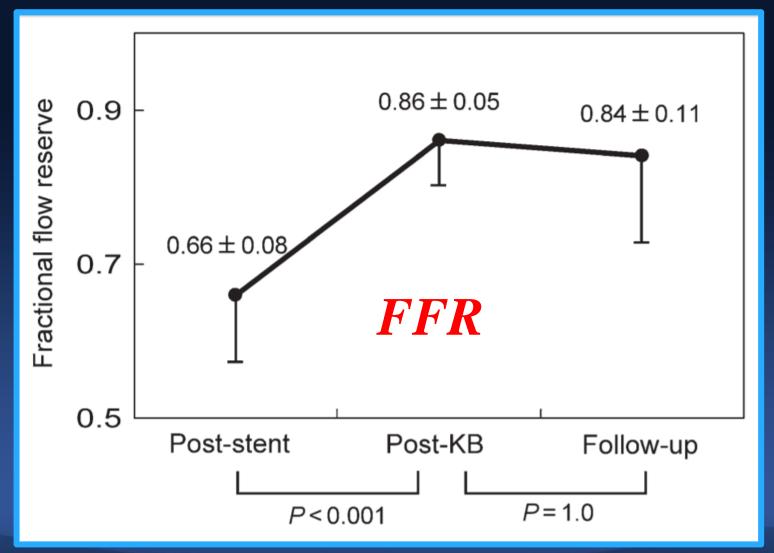
Diagonal Branch Disappeared after Stenting



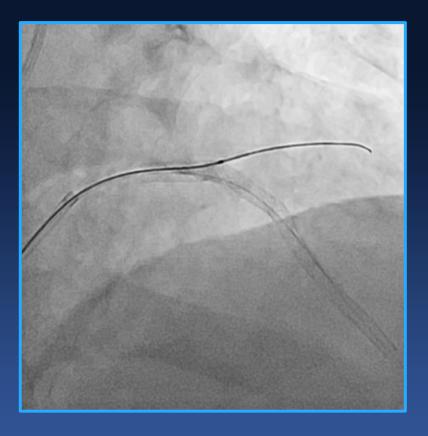


Pre-Stenting DS vs. Post-Stenting FFR of Side Branches

Park SJ, Ahn JM et al. JACC Cardiovasc Interv. 2012 Feb;5(2):155-61


Diagonal Branch Disappeared after Stenting

- Provisional Stenting?
- Kissing Balloon?
- Keep It Open?



Kissing Balloon: Keep It Open With Small Balloon

Koo BK et al. Eur Heart J. 2008 Mar;29(6):726-32

Keep It Open Using Small Balloon

Tazuna 1.5(15)mm

TIMI 3 flow

Contemporary Practical Approach for Non-LM Bifurcation PCI

Provisional Stenting Is Always Enough

Any 2 Stent Technique

Jailing Side Branch ?How to Treat ?

It Would Be OK !

With Simple Technique ; POT, Sequential HP Inflation on Both Branches, and Finally Kissing !

Key Message of Non-LM Side Branch PCI

(FFR) Concept is More Important than Technique

