Beyond IVUS : OCT, NIRS, and Beyond

Joon Won Kang, RT

Cardiovascular Center, Anam Hospital Korea University Medical Center

IMAGING & PHYSIOLOGY SUMMIT2014

2011 ACCF/AHA/SCAI Guideline for Percutaneous Coronary Intervention

A Report of the American College of Cardiology Foundation/American Heart Association Task Force on Practice Guidelines and the Society for Cardiovascular Angiography and Interventions

	I.	lla	llb	ш
IVUS		 Indeterminant LM CAD. Allograftvasculopathy. ISR. 	 Non–left main intermediate. Guide stenting. Mechanism of stent thrombosis. 	1.No plan for revasc
OCT	-	-	-	-

CATHETERIZATION	N R INTERVENTIONS	SEAI Network Wildhowsky	
Expert consensus statement on the use of fractional flow reserve, intravascular ultrasound, and optical coherence tomography A consensus statement of the society of cardiovascular angiography and interventions		2014 SCAI consensus document	
	ОСТ	IVUS	
Definitely beneficial		Determine size of vessel Optimal stent deployment	
Probably beneficial	Optimal stent deployment (sizing, apposition, thrombus, dissection) compared with IVUS	LMCA assessment	
Possibly beneficial	Plaque morphology	Plaque morphology	
No proven value/ discouraged	Non-LMCA lesion severity	Determine lesion significance	

ОСТ

IVUS

Which One is Better ???

ADAPT DES

Witzenbichler et al Circulation 2014;129:463-70

4 Meta-Analysis

Zhang et al. Eurointervention 2012;8:855-65 Kersy C et al. Int J Cardiol 2013;170:54-63 Jang et al. JACC Cardiovasc Inter 2014;7:233-43 Ahn et al. Am J Cardiol 2014;113:1338-47

CLI-OPCI

Prati F et al. EuroIntervention 2012;8:823-9

OCT vs IVUS guided PCI

Habara et al. Circ Cardiovasc Interv. 2012;5:193-201

How IVUS changed the procedure?

ADAPT-DES

Witzenbichler et al. Circulation 2014;129:463-70

MACE (Definite/Probable ST, Cardiac Death, MI)

Two year follow-up data from ADAPT-DES (3361 pts treated with IVUSguidance vs 5221 pts treated with angiographic guidance)

Definite/Probable ST 2 Definite/Probable ST (%) HR: 0.47 [95% CI: 0.28, 0.80] P = 0.0041.16% **IVUS Used** 0.55% 0 12 18 24 0 6 Time in Months Number at risk: **IVUS Used** 3260 3182 3065 1791 3361 IVUS Not Used 5221 5019 4886 4713 2279

Maehara et al. J Am Coll Cardiol 2013;62:B21-B22

New Generation High Frequency IVUS

Feature	ACIST HDi / Kodama	Boston Scientific	Volcano FACT	InfraReDx	St Jude Medical OCT
Frequency or Wavelength	60 MHz	55 MHz	NA	50 MHz	1.3 µm
Axial Resolution	40 µm	22 µm	<50 μm	20 µm	15 µm
Soft Tissue Penetration	> 2.5 mm		>3.5 mm		0.8-1.2 mm
Pullback Speed (mm/s)	0.5, 1.0, 2.5, 5.0, <mark>10</mark>	0.5	,1.0	0.5	20
Pullback Length (mm)	130	1	00	150	75

High Speed Pullback (10mm/sec) with Flushing

High Speed Pullback with Flushing

Normal Pullback

Edge dissec

Protrusion

DEXTRAN 10PCT 2ML 16MLTOT 5MM.S

Animal Coronary Artery

Volcano: FACT (Focused Acoustic Computed Tomography)

FACT ultrasound transducer intended to gen erate a "cleaner" signal than traditional piezo electricity, near field resolution close to OCT.

InfraReDx 50MHz IVUS Human Coronary Artery

What we are looking for more?

- Intraplaque Hemorrhage
- Thrombus
- Macrophage
- Bioabsorbable stent, stent fracture
- Edge dissection

Intraplaque Hemorrhage

Soest G et al, JACC Img 2011; 4:810-3.

Macrophage

Near-infrared spectroscopy (NIRS-IVUS)

NIRS: Accuracy vs. Histology Ex vivo validation

Distal

Three-vessel coronary artery disease evaluation by multimodality imaging with NIRS plus IVUS and OCT

E. Fabris et al. / International Journal of Cardiology 180 (2015) 21–29

Three-vessel coronary artery disease evaluation by multimodality imaging with NIRS plus IVUS and OCT

E. Fabris et al. / International Journal of Cardiology 180 (2015) 21–29

Quantification of lipid accumulation

LCBI = Lipid Core Burden Index (% yellow pixels of ROI x 10)

maxLCBI = the 4 mm segment with highest lipid content

NIRS-IVUS:

Serial assesment of pharmacological effects?

Simsek et al. Inter J. Cardiol 2011

NIRS useful for clinical decision making

New developments and trends in OCT

- OCT-derived FFR
- Super high speed Heartbeat OCT
- Spectroscopic OCT (SOCT)
- Multimodality imaging: OCT +
 - IVUS
 - Near-infrared spectroscopy (NIRS)
 - Near-infrared autofluorescence (NIRAF)
 - Near-infrared exogenous fluorescence (NIRF)
- µOCT Cellular level resolution

OCT-derived FFR

Journal of the American College of Cardiology

nee 411, tensor 12, Transforment, 5 April 2014, Proper AAT 19

10.142+0.02 Web International Lowersky Pathwest

DERIVATION AND VALIDATION OF OPTICAL COHERENCE TOMOGRAPHY-DERIVED FRACTIONAL FLOW RESERVE FOR THE ABSESSMENT OF INTERMEDIATE CORONARY LESIONS

Som Jun Jung, Jung Min Alter, Emerge Jung Park, Wang Yold On-

Hanna hultursaid toetkate of finantea and Taileolingi, Tangson, Isaalt Konna Asian hultura (Taireo, Farinz, Bundi, Kona Asianataa antina: 29 Alarist, 2014

Journal of the American College of Cardiology, Volume 63, Issue 12, Supplement 2, 1 April 2014, Page S33

Diagnostic Performance for FFR≤0.80

In Laminar Flow

In Turbulent Flow

OCT-derived functional measurements

FFRreal

	Derivation set (n=21)	Validation set (n=21)	Total patients (n=42)
Sensitivity, %	75	67	71
Specificity, %	92	100	96
Positive Predictive Value, %	86	100	92
Negative Predictive Value, %	86	80	83
Accuracy, %	86	86	86

	Derivation set (n=21)	Validation set (n=21)	Total patients (n=42)
Sensitivity, %	83	75	79
Specificity, %	80	85	82
Positive Predictive Value, %	63	75	69
Negative Predictive Value, %	92	85	88
Accuracy, %	81	81	81

FFRreal

0.9

1.0

Journal of the American College of Cardiology, Volume 63, Issue 12, Supplement 2, 1 April 2014, Page S33

Super high speed Heartbeat OCT

Cardiac motion artifacts in IVOCT pullback imaging

Faithful 3D matching, biomechanics, even less flush needed...

Heartbeat OCT catheter

T. Wang et al.2013, Opt Lett 38(10), 1715-1717 Wang, Van der Steen, Van Soest, unpublished

Heartbeat OCT: True 3D motionless IVOCT

40 mm/s pullback

158 frames per second

81 kHz A-line rate

> 100 mm/s pullback

> 3000 frames per second

> 1.5 MHz A-line rate

Speed (Heartbeat OCT)

Faithful 3D matching, biomechanics, even less flush needed...

Slide courtesy of Gijs van Soest, Erasmus Medical Center

Spectroscopic OCT (SOCT)

Composition / molecular

Fibrous Lipid Calcium Adventitia Probability of lipid or other plaque chemicals (collagen, adventitial fat, etc.) determined by classification algorithms

Tearney Lab: Christine Fleming, PhD

Multimodality imaging: OCT + IVUS

Images courtesy of Brian Courtney, <u>University of Toronto</u>

Slide courtesy of Zhongping Chen, UC Irvine

Multimodality imaging: OCT + NIRS (Near-infrared spectroscopy)

Chemical information

OCT-NIRS catheter has two optical fibers

Multimodality imaging: OCT + NIRAF

(Near-infrared autofluorescence)

Microstructural and Necrotic Cores

Wellman Center for Photomedicine, Harvard Medical School, Massachusetts General Hospital and Harvard-MIT Health Science and Technology

Multimodality imaging: OCT + NIRF (Near-infrared fluorescence)

Targeted molecular imaging

- Inflammation Enzymatic activity Fibrin
- Dye injected intravenously (Indocyanine green : ICG)

Future is bright for intravascular optical imaging

Collaboration between Jaffer and Tearney Labs

µOCT - Cellular level resolution

Flowing Blood

Cellular 1 µm resolution

Conclusion

- New generation of high definition of IVUS will provide better resolution with clinically enough penetration
- Clinically useful easier diagnosis such as underexpansion and dissection will be expected
 Understanding of plaque vulnerability (intraplaque he morrhage, macrophage, thrombus) Would be promising

Conclusion

4. NIRS is highly accurate to detect lipid core plaque in human coronary arteries

 Next generation OCT will increase our capabilities to evaluate the coronary wall beyond microstructure

 Higher technology to visualize cell level morphology and complementary imaging, which allow us to understand vulnerable plaque more details

Which One is Better ???

Improve outcomes of PCI !!!