Assessment of Vulnerable Plaque by IVUS and VH-IVUS

Akiko Maehara, MD
Director of Intravascular Imaging & Physiology Core Laboratories
Associate Director of MRI/MDCT Core Laboratory

Cardiovascular Research Foundation, NY
Plaque Morphology of AMI/SCD w/Thrombi

<table>
<thead>
<tr>
<th>Condition</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Plaque Rupture</td>
<td>60% (f) - 80% (m)</td>
</tr>
<tr>
<td>Plaque Erosion</td>
<td>20% (m) - 40% (f)</td>
</tr>
<tr>
<td>Calcified Nodule</td>
<td>2% - 7%</td>
</tr>
</tbody>
</table>

Images show various morphologies of plaques with thrombi.
Plaque Rupture & Echolucent Plaque in non-Culprit lesions HORIZONS-AMI

A. Plaque ruptures at baseline (N=29)

- Right (N=15)
- Left anterior descending (N=8)
- Left circumflex (N=4)

B. Echolucent plaques at baseline (N=35)

- Right (N=13)
- Left anterior descending (N=16)
- Left circumflex (N=3)

Doi H et al. Unpublished data
Plaque Rupture

13 Months FU

29

4/11: Healed

7/11: Persisted

9: New

Echolucent Plaque

35

11/25: Disappeared

14/25: Persisted

10: New

Doi H et al. Unpublished data
Calcium Nodule

Data obtained in the CDEV3 Study, Gardner et al, JACC Imaging, 2008, sponsored by InfraReDx, Inc.
• 327 Calcified nodule in 1340 vessels in 572 pts
• Incidence: pt 49.8% (285/572), vessel 18% (241/1340)
• Multiple nodule/vessel 25.3% (61/241)
Distribution of Calcium Nodule

Similar with the distribution of plaque rupture, TCFA

Tam A @ CRF
<table>
<thead>
<tr>
<th>VH-IVUS Classification</th>
<th>Thin-cap FA</th>
<th>Thick-cap FA</th>
<th>PIT</th>
<th>Fibrous</th>
<th>Fibrocalcific</th>
</tr>
</thead>
<tbody>
<tr>
<td>More than 10% Confluent Necrotic Core</td>
<td>More than 10% Confluent Necrotic Core</td>
<td>NO more than 10% Confluent Necrotic Core</td>
<td>More than 10% Confluent Calcium</td>
<td>More than 15% Fibrofatty</td>
<td></td>
</tr>
</tbody>
</table>
Histological Atherosclerosis Classification

<table>
<thead>
<tr>
<th>Nomenclature and main histology</th>
<th>Sequences in progression</th>
<th>Main growth mechanism</th>
<th>Earliest onset</th>
<th>Clinical correlation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type I (initial) lesion</td>
<td>I</td>
<td>isolated macrophage</td>
<td>from first decade</td>
<td>clinically silent</td>
</tr>
<tr>
<td>mainly intracellular lipid</td>
<td>II</td>
<td>foam cells</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Type II (fatty streak) lesion</td>
<td>III</td>
<td>mainly by lipid</td>
<td>from third decade</td>
<td></td>
</tr>
<tr>
<td>accumulation</td>
<td></td>
<td>extracellular lipid</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Type III (intermediate) lesion</td>
<td>IV</td>
<td>Type II changes & core of extracellular lipid</td>
<td>from fourth decade</td>
<td>clinically silent or overt</td>
</tr>
<tr>
<td>Type IV (atheroma) lesion</td>
<td>V</td>
<td>lipid core & fibrotic layer, or multiple lipid cores & fibrotic layers, or mainly calcific, or mainly fibrotic</td>
<td>accelerated smooth muscle and collagen increase</td>
<td></td>
</tr>
<tr>
<td>Type V (fibroatheroma) lesion</td>
<td>VI</td>
<td>surface defect, hematoma-hemorrhage, thrombus</td>
<td>thrombosis, hematoma</td>
<td></td>
</tr>
</tbody>
</table>

- **Type II lesion**: Macrophage foam cells
 - Adaptive thickening (smooth muscle)
 - Intima
 - Media
- **Type III (preatheroma)**
- **Type IV (atheroma)**
 - Small pools of extracellular lipid
 - Core of extracellular lipid
 - Intima
- **Type V (fibroatheroma)**
- **Type VI (complicated lesion)**
 - Thrombus
 - Fibrous thickening
 - Fissure and hematoma
1. Pathological Intimal Thickening (PIT)
2. Thin cap fibroatheroma (TCFA)
3. Thick cap Fibroatheroma (ThCFA)
4. Fibrous Plaque
5. Fibrocalcific
Pathological Intimal thickening & Fibroatheroma

Pathologic intimal thickening

Fibrous cap atheroma

Necrosis (-)

Necrosis (+)
<table>
<thead>
<tr>
<th>VH-IVUS Classification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Thin-cap FA</td>
</tr>
<tr>
<td>Thick-cap FA</td>
</tr>
<tr>
<td>PIT</td>
</tr>
<tr>
<td>Fibrous</td>
</tr>
<tr>
<td>Fibrocalcific</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Condition</th>
</tr>
</thead>
<tbody>
<tr>
<td>More than 10%</td>
</tr>
<tr>
<td>Confluent</td>
</tr>
<tr>
<td>Necrotic Core</td>
</tr>
<tr>
<td>More than 15%</td>
</tr>
<tr>
<td>Fibrofatty</td>
</tr>
<tr>
<td>NO more than 10%</td>
</tr>
<tr>
<td>Confluent</td>
</tr>
<tr>
<td>Necrotic Core</td>
</tr>
<tr>
<td>More than 10%</td>
</tr>
<tr>
<td>confluent calcium</td>
</tr>
</tbody>
</table>

[Images of vessel cross-sections with color-coded regions corresponding to the classification criteria.]
“Confluent”
Confluent Necrotic Core

Non-Confluent
Pathological Intimal Thickening

Confluent
Thick Cap Fibroatheroma
Thick cap fibroatheroma

Thin cap fibroatheroma
VH Thin cap fibroatheroma (TCFA)

1. Confluent NC > 10%
2. 30° NC abutting the lumen
3. 3 consecutive frames (=1.5mm in length)

Thin cap < 65 µm (less than the 200 µm resolution of IVUS)
Incidence of NC at the bottom/shoulder of the cavity: 84% (41/49)

1. 129 ruptures in 100 vessels in 97 patients in PROSPECT.
2. Typical plaque rupture=49/129 (38%)

Yang J Unpublished data
Prospect 27731-003: 58 yo man

3/15/05: NSTEMI, PCI of MRCA

3/23/06 (1 year): Unstable angina attributed to LAD

Index 3/15/05

QCA MLAD DS 31.1%

Event 3/23/06

QCA MLAD DS 100%
PROSPECT 27731-003: Index 3/15/05

Baseline MLAD
QCA: DS 31.1%
IVUS: MLA 3.6 mm²
VH: TCFA

MLAD
1. TCFA
 3.6 46%

PLAD
2. TCFA
 5.7 60%
PROSPECT 82910-012: 52 yo man

2/13/06: NSTEMI, PCI of MLAD

2/6/07 (1 year): NSTEMI attributed to LCX

Index 2/13/06

QCA PLCX DS 38.6%

Event 2/6/07

QCA PLCX DS 71.3%
PROSPECT 82910-012: Index 2/13/06

Baseline PLCX
QCA: DS 38.6%
IVUS: MLA 5.3 mm²
VH: ThCFA

Echolucent Plaque
True or Artificial Necrotic Core?
Necrotic core and Calcium are together **longitudinally**.
Necrotic core and Calcium are together **circumferentially**.
Echolucent Plaque = Vulnerable Plaque?

Fibrous Cap

Necrotic Core?
Echolucent Plaque and VH
Echolucent Plaque and VH

Echolucent Zone
- FT 14 (26%)
- FT+FF 35 (66%)
- FF 4 (8%)

Adjacent to Echolucent Zone
- NC 27 (51%)
- NC+DC 14 (26%)
- FT/FF 10 (19%)
- DC 2 (4%)

VH Phenotype of Echolucent Lesion
- PIT 16 (30%)
- VH-TCFA 3 (6%)
- ThCFA 27 (51%)
- Fibrocalcific 7 (13%)
Attenuated Plaque and VH

Attenuated plaque
P&M: 9.44 mm²
PB: 67.3%

NC area: 1.96 mm²
NC%: 20.8%

Non attenuated plaque
P&M: 8.8 mm²
PB: 61.7%

NC area: 0.54 mm²
NC%: 6.1%

Wu X et al, Am J Cardiol in press
Attenuated Plaque & NC

P<0.001

Incidence (%)

100%

75%

50%

25%

0

1st quartile
(≤ 0.45mm²)

25
(39%)

3
(6%)

Attenuated plaque

Non-attenuated plaque

2nd quartile
(0.45-0.95mm²)

17
(26%)

10
(21%)

3rd quartile
(0.95-1.5mm²)

12
(18%)

18
(38%)

4th quartile
(>1.5mm²)

11
(17%)

16
(34%)

Necrotic core area

Wu X et al, Am J Cardiol in press
Attenuated Plaque

Data obtained in the CDEV3 Study, Gardner et al, JACC Imaging, 2008, sponsored by InfraReDx, Inc.
Attenuated Plaque

Data obtained in the CDEV3 Study, Gardner et al, JACC Imaging, 2008, sponsored by InfraReDx, Inc.
Plaque Morphology of AMI/SCD w/Thrombi

- **Plaque Rupture**: 60% (f) – 80% (m)
- **Plaque Erosion**: 20% (m) – 40% (f)
- **Calcified Nodule**: 2% – 7%
Comparison between Ruptured thrombosis vs. Erosive thrombosis

<table>
<thead>
<tr>
<th></th>
<th>No Plaque Rupture (n=23)</th>
<th>Plaque Rupture (n=17)</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>TCFA</td>
<td>73.9%</td>
<td>64.7%</td>
<td>0.53</td>
</tr>
<tr>
<td>MLA site</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lumen Area (mm²)</td>
<td>3.5±1.4</td>
<td>3.1±0.6</td>
<td>0.34</td>
</tr>
<tr>
<td>Vessel Area (mm²)</td>
<td>16.0±4.4</td>
<td>20.3±5.5</td>
<td>0.09</td>
</tr>
<tr>
<td>Plaque Burden (%)</td>
<td>78.2±5.5</td>
<td>83.6±4.7</td>
<td>0.002</td>
</tr>
<tr>
<td>Necrotic Core (%)</td>
<td>23.1±11.9</td>
<td>19.1±10.1</td>
<td>0.26</td>
</tr>
<tr>
<td>Maximum NC site</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lumen Area (mm²)</td>
<td>4.8±2.0</td>
<td>5.4±1.7</td>
<td>0.40</td>
</tr>
<tr>
<td>Vessel Area (mm²)</td>
<td>16.0±4.3</td>
<td>18.6±5.3</td>
<td>0.11</td>
</tr>
<tr>
<td>Plaque Burden (%)</td>
<td>70.3±8.0</td>
<td>70.3±7.9</td>
<td>0.97</td>
</tr>
<tr>
<td>Necrotic Core (%)</td>
<td>34.3±12.9</td>
<td>28.7±9.1</td>
<td>0.13</td>
</tr>
</tbody>
</table>
Comparison between Ruptured thrombosis vs. Erosive thrombosis

- Pathology -

<table>
<thead>
<tr>
<th></th>
<th>Erosion (n=50)</th>
<th>Rupture (n=65)</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age (yrs)</td>
<td>43±9</td>
<td>52±10</td>
<td><0.0001</td>
</tr>
<tr>
<td>Male</td>
<td>74%</td>
<td>89%</td>
<td>0.03</td>
</tr>
<tr>
<td>Vessel Area (mm²)</td>
<td>9.5±5.2</td>
<td>13.7±6.0</td>
<td><0.0001</td>
</tr>
<tr>
<td>Plaque Burden (%)</td>
<td>77.1±13.8</td>
<td>71.3±14.9</td>
<td>0.02</td>
</tr>
<tr>
<td>Plaque Burden (%)</td>
<td>78.2±5.5</td>
<td>83.6±4.7</td>
<td>0.002</td>
</tr>
<tr>
<td>Necrotic Core (%)</td>
<td>18.3±24.4</td>
<td>38.3±23.4</td>
<td><0.0001</td>
</tr>
<tr>
<td>Occlusive Thrombus (%)</td>
<td>52%</td>
<td>46%</td>
<td>0.53</td>
</tr>
</tbody>
</table>
Vulnerable Plaque?

Pathological Intimal Thickening
Thick Cap FA Thin Cap FA Rupture

Echolucent Plaque
Attenuated Plaque
Calcium Nodule

thrombosis