Changing practice of ACS treatment based on PLATO & Guideline recommendation; Insight from One-year real-world registry

Kyounghoon LEE

Department of cardiovascular medicine, Gil Medical center, Gachon University

Contents

 Update of only proven CV mortality benefit on Ticagrelor based on PLATO & Guideline recommendation

What happen in Asian patients with Ticagrelor treatment thur. RWE

Clinical benefits of Ticagrelor against De-escalation

Mechanism of Action: Comparison

Ticagrelor

Clopidogrel/Prasugrel

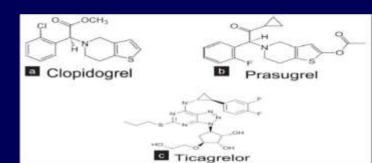
CPTP

Thienopyridines

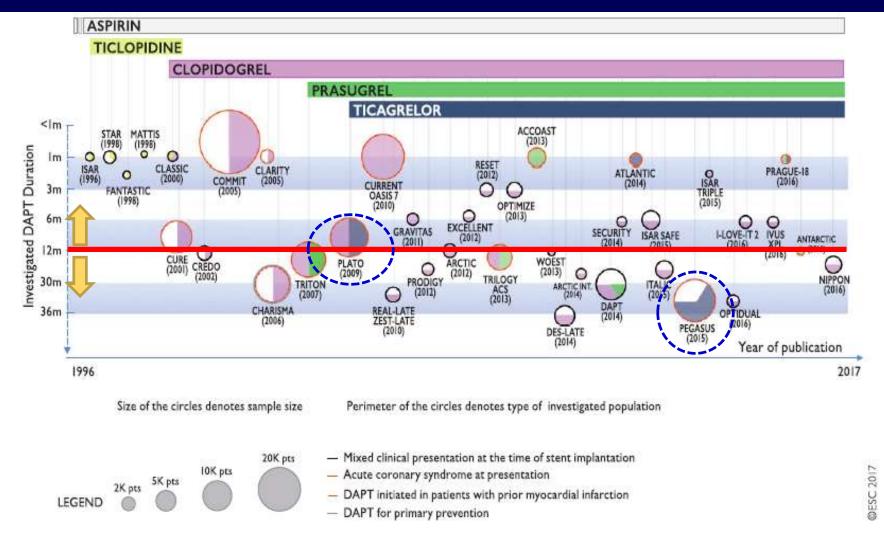
Direct acting

Prodrugs

24 hours PK & systemic profile


Intermittent PK & no systemic exposure

Reversible


Irreversible

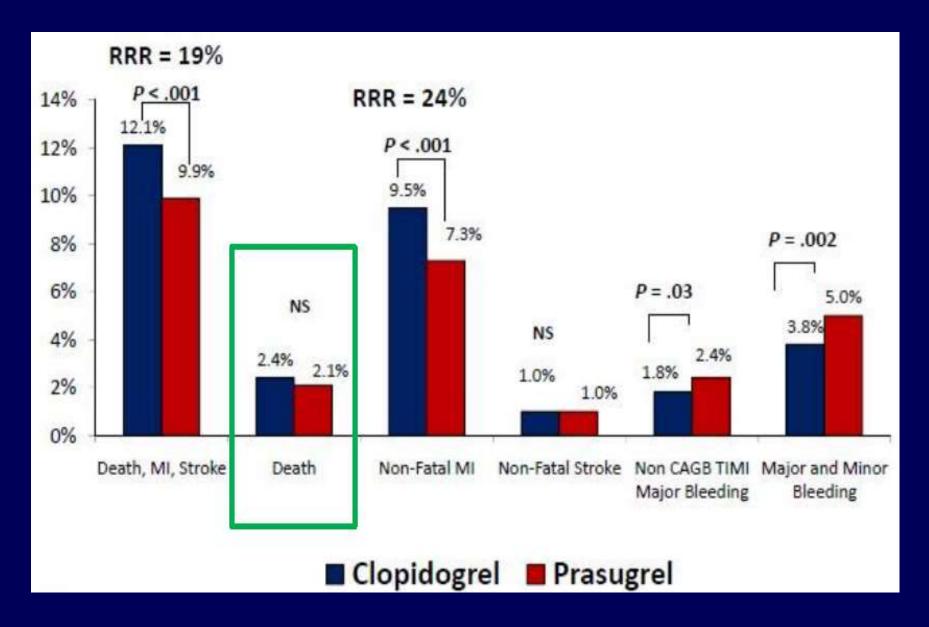
Inhibition of ENT-1-mediated adenosine uptake (dual pathway)

No additional Mechanism of Action

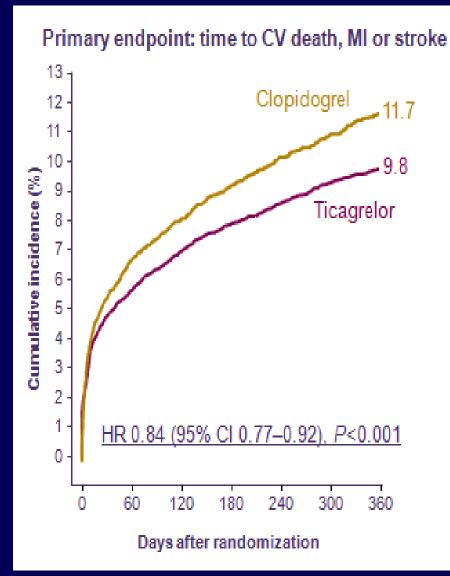
PLATO & PEGASUS TIMI-54 are key trials in History of DAPT in patients with CAD

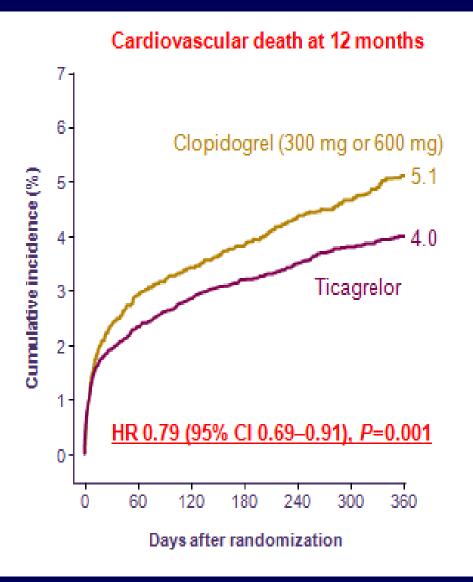
Recommendations on P2Y12 inhibitor selection and timing: Ticagrelor vs Prasugrel (Class I)

P2Y₁₂ inhibitor selection and timing



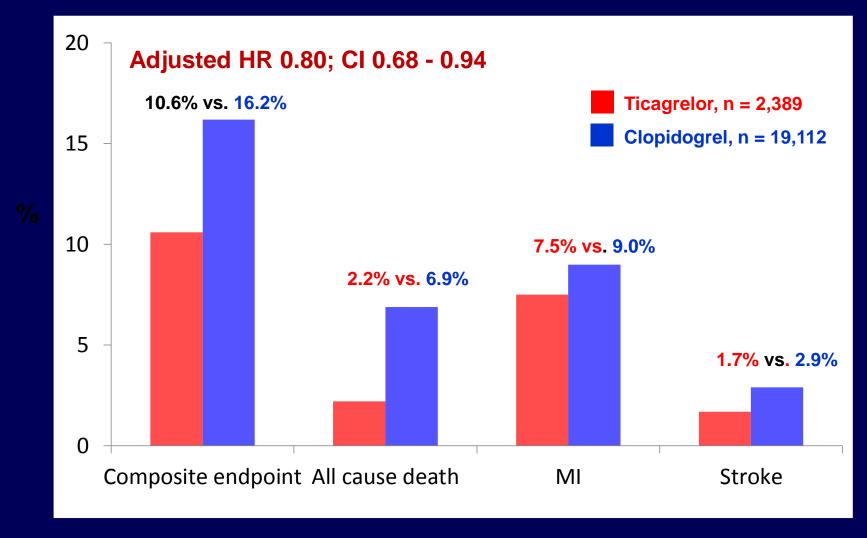
Recommendations	Class	Level
In patients with ACS, ticagrelor (180 mg loading dose, 90 mg twice daily) on top of aspirin is recommended, regardless of initial treatment strategy, including patients pre-treated with clopidogrel (which should be discontinued when ticagrelor is commenced) unless there are contra-indications.		В
In patients with ACS undergoing PCI, prasugrel (60 mg loading dose, 10 mg daily dose) on top of aspirin is recommended for P2Y ₁₂ inhibitor-naïve patients with NSTE-ACS or initially conservatively managed STEMI if indication for PCI is established, or in STEMI patients undergoing immediate coronary catheterization unless there is a high-risk of life-threatening bleeding or other contra-indications.	T	В


www.escardio.org/guidelines


2017 ESC Focused Update on DAPT in Coronary Artery Disease, developed in collaboration with EACTS (European Heart Journal 2017 - doi:10.1093/eurhearti/ehx419)

TRITON-TIMI 38 – Prasugrel not reduced death

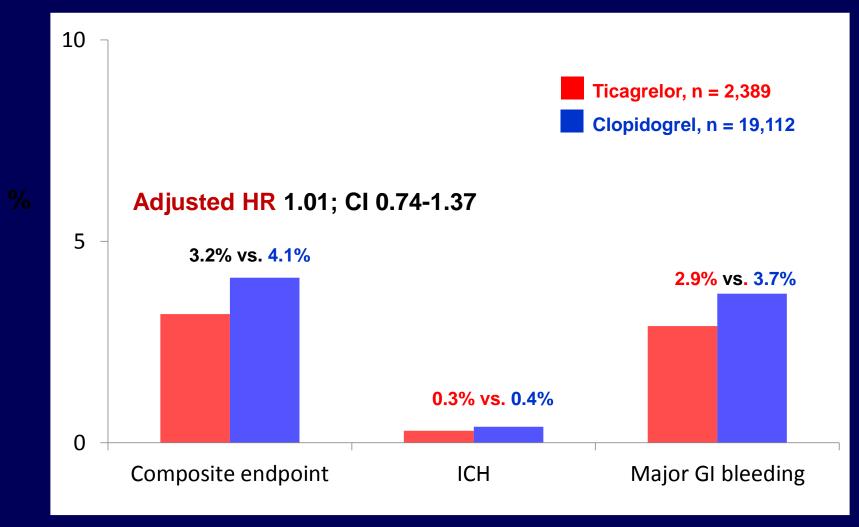
PLATO: primary endpoint and CV mortality



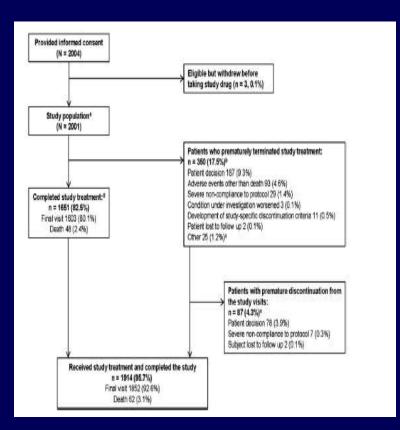
What happen in Asian patients with Ticagrelor treatment thur. RWE

Taiwan National Health Insurance Database

Composite of all cause death, MI or stroke


The Taiwan National Health Insurance Research Database between January 2012 and December 2014

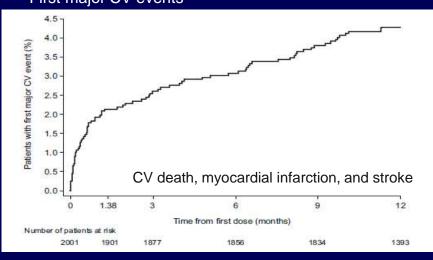
Taiwan National Health Insurance Database


Composite of ICH and major GI bleeding

The Taiwan National Health Insurance Research Database between January 2012 and December 2014

Safety and Incidence of Cardiovascular Events in Chinese Patients with Acute Coronary Syndrome Treated with Ticagrelor

the 12-Month, Phase IV, Multicenter, Single-Arm DAYU Study

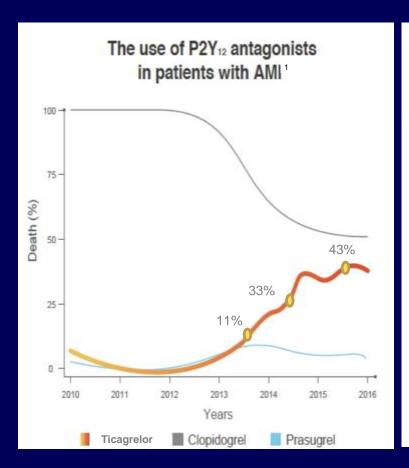


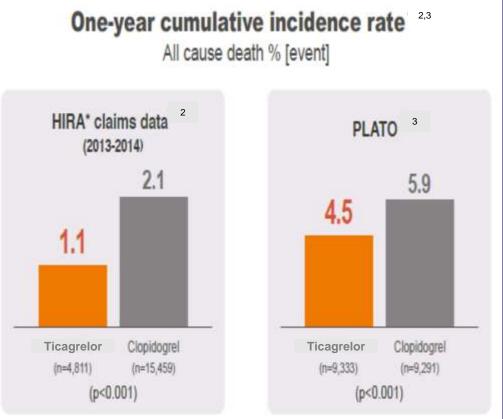
Ticagrelor plus low-dose aspirin for up to 1 year was associated with a low rate of major bleeding events and a low incidence of major CV events (CV death, myocardial infarction, stroke) in Chinese patients with ACS.

· PLATO-defined bleeding events by severity

Bleed severity	Ticagrelor 90 mg b.i.d $(n = 2001)$					
	Patients with bleeding n (%)	Number of bleeding events				
Total major bleeding	27 (1.3)	28				
Life-threatening/fatal	17 (0.8)	17 4				
Fatal	4(0.2)					
Life-threatening	13 (0.6)	13				
Major, other	11 (0.5)	11				
Composite of major and minor bleeding	93 (4.6)	106				
Minor bleeding	66 (3.3)	78				
Composite of major, minor, and minimal bleeding	426 (21.3)	640				
Minimal bleeding	353 (17.6)	534				

· First major CV events




New P2Y12 antagonist was associated lower rate of MACCE and cardiac mortality in AMI patients treated with PCI (KAMIR-NIH) database

	Before PS match			After I		
	Clopidogrel (n=7580)	New P2Y12 inhibitor (n=4151)	p-value	Clopidogrel (n=4151)	New P2Y12 inhibitor (n=4151)	p-value
MACE	718 (9.9)	254 (6.4)	<0.001	323 (8.2)	254 (6.4)	0.002
Cardiac death	461(6.3)	132 (3.3)	<0.001	189 (4.7)	132 (3.3)	<0.001
Non-fatal myocardial infarction	59 (1.0)	21 (0.6)	0.05	23 (0.7)	21 (0.6)	0.783
Target lesion revascularization	144 (2.3)	64 (1.8)	0.412	85 (2.4)	64 (1.8)	0.337
Stroke	58 (0.9)	25 (0.7)	0.137	27 (0.8)	25 (0.7)	0.366
All bleeding event	n=1798	n=913		n=753	n=869	
TIMI major bleeding	11 (0.6)	4 (0.4)	0.673	5 (0.7)	4 (0.5)	0.673
TIMI minor bleeding	245 (13.6)	158 (17.3)	0.011	104 (13.8)	158 (17.3)	0.057

- TIMI major bleeding was similar between two groups.
- TIMI minor bleeding showed a trend toward a lower incidence in the clopidogrel group (13.8% vs. 17.3%, p=0.057).

Antiplatelet therapy for AMI in Korea based on 1-year outcomes from HIRA database

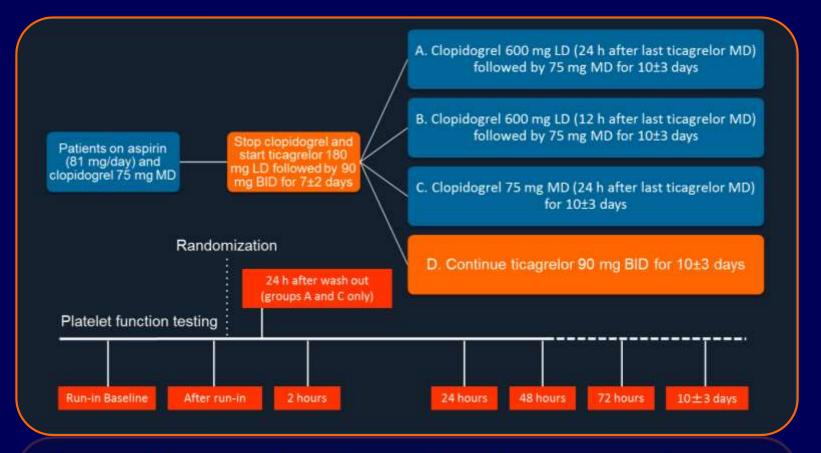
- AMI patients undergoing percutaneous coronary intervention between 2010 and 2015 were assessed using claim data form the Health Insurance
 Review and Assessment Service. The purpose of this study was to investigate trends in antiplatelet agent use for acute myocardial infarction(AMI) and
 their impact on 30-day clinical outcomes.
- Among a total 20,270 patients (age <75 years) with AMI undergoing percutaneous coronary intervention who received dual antiplatelet therapy for at least 30 days, clinical outcomes at 1 year were assessed from the database of Health Insurance Review and Assessment Service in Korea between 2013 and 2014.

Clinical benefits of Ticagrelor against De-escalation

Circulation

ORIGINAL RESEARCH ARTICLE

Pharmacodynamic Effects of Switching From Ticagrelor to Clopidogrel in Patients With Coronary Artery Disease

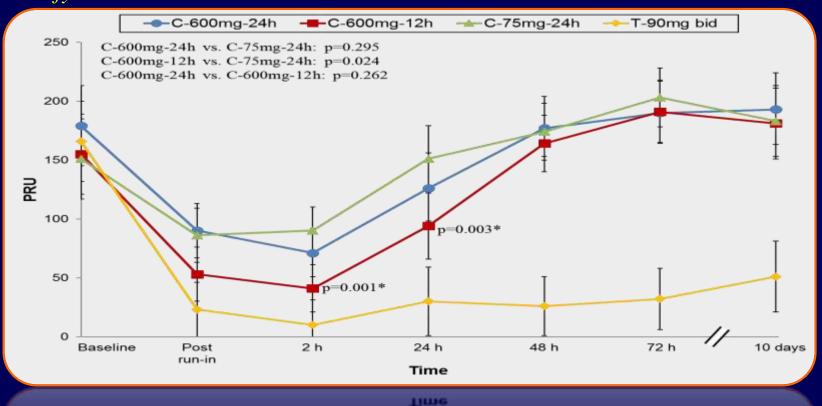

Results of the SWAP (Switching Antiplatelet Therapy)-4 Study

Francesco Franchi, MD, Fabiana Rollini, MD, Jose Rivas Rios, MD, Andrea Rivas, MD, Malhar Agarwal, MD, Megha Kureti, MD, Deepa Nagaraju, MD, Mustafa Wali, MD, Zubair Shaikh, MD, Maryuri Briceno, MD, Ahmed Nawaz, MD, Jae Youn Moon, MD, PhD, Latonya Been, AAS, Siva Suryadevara, MD, Daniel Soffer, MD, Martin M Zenni, MD, Theodore A Bass, MD, Dominick J Angiolillo, MD, PhD

Pharmacodynamic Effects of Switching from Ticagrelor to Clopidogrel in Patients with Coronary Artery Disease: Results of the SWAP -4 Study

Study design

SWAP-4 was a prospective, randomized, open-label, single center study aimed to assess the pharmacodynamic effects of de-escalating from ticagrelor to clopidogrel in patients with CAD on a background of aspirin therapy, and how this is affected by the use of a clopidogrel LD compared with a MD regimen and the impact of different timing of LD administration


Pharmacodynamic Effects of Switching from Ticagrelor to Clopidogrel in Patients with Coronary Artery Disease: Results of the SWAP -4 Study

Results

PRU levels were similar between C-600mg-24h and C-75mg-24h (p=0.29), including at 48 hours (primary endpoint; LSM difference: -6.9; 95% CI: -38.1 to 24.3; p=0.66). PRU levels were lower with C-600mg-12h versus C-75mg-24h (p=0.024)

VerifyNow P2Y12

Baseline

54 W

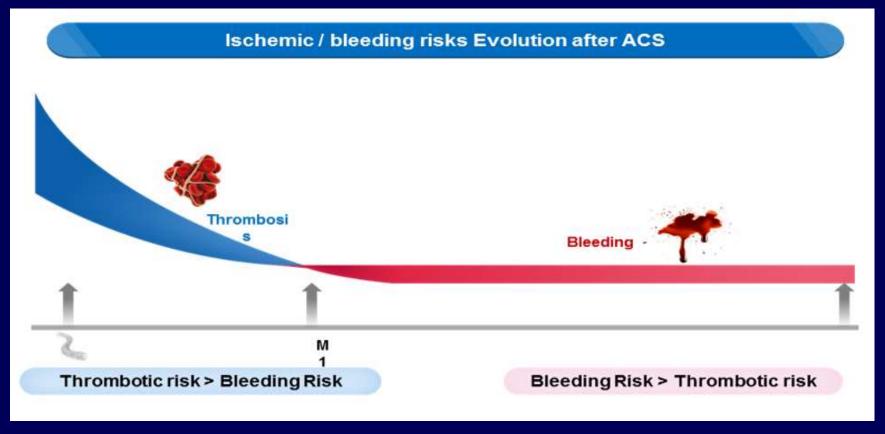
Increasing ischemic risk due to de-escalation

A total of 653 patients with STEMI were randomly assigned to receive loading dose of ticagrelor or clopidogrel before PCI and then received maintenance dose, respectively, for 12 months follow-up in China

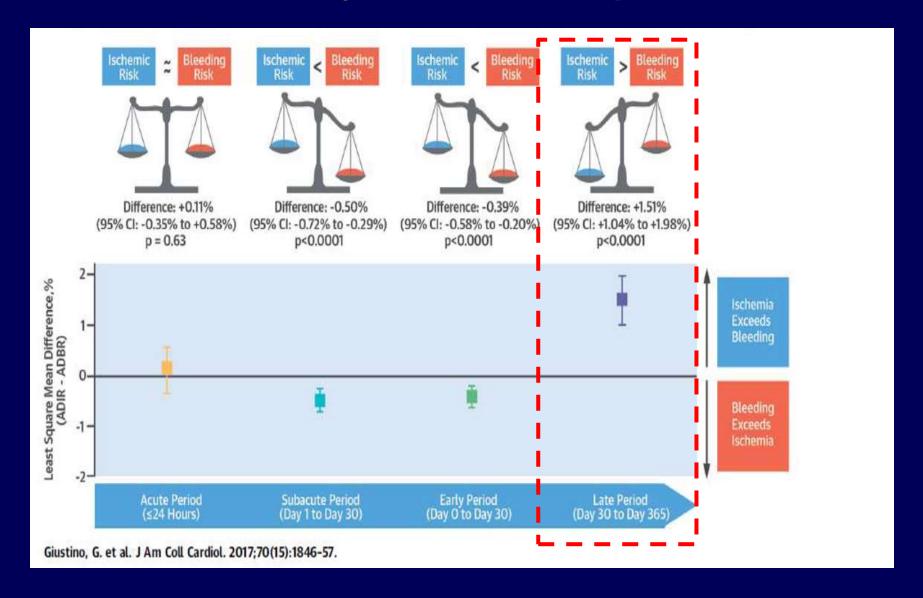
The rate of secondary ischemic events in the de-escalation group was higher than that in the ticagrelor group (15.1% vs. 5.6%, p=0.008)

Clinical outcomes [n(%)]	De-escalation group	5.000 (1.000) (1.000)	Clopidogrel non-switched	Ticagrelor v de-escalati		Clopido grel de-escalati		Clopidogrel vs. t	icagrelor	P-value
	(n=152)	group (n=161)	group (n=281)	Hazard or Odds Ratio for de-escalation (95%CI)	p-value	Hazard or Odds Ratio de-escalation (95%CI)	p-value	Hazard or Odds Ratio for ticagrelor (95%CI)	p-value	3
MACE	5 (3.3)	4 (2.5)	17 (6.0)	0.75(0.18,2.88)	0.74	1.89(0.73,5.85)	0.53	2.53(0.92,8.9)	0.16	0.16
Cardiovascular death	1 (0.7)	3 (1.9)	8 (2.8)	2.87(0.36,58.31)	0.62	4.42(0.8,82.48)	0.17	1.54(0.44,7.12)	0.76	0.36
Myocardial infarction	3 (2.0)	0 (0.0)	6 (2.1)		0.11	1.08(0.28,5.19)	1.00		0.01	0.14
Ischaemic stroke	1 (0.7)	1 (0.6)	3 (1.1)	0.94(0.04,24.01)	1.00	1.63(0.21,33.1)	1.00	1.73(0.22,35.06)	1.00	1.00
The secondary ischemic events	23 (15.1)	9 (5.6)	69 (24.6)	0.33(0.14,0.72)	800.0	1.83(1.1,3.12)	0.03	5.5(2.8,12.12)	<0.001	< 0.001
Re-hospitalization for intable angina	23 (15.1)	9 (5.6)	64 (22.8)	0.33(0.14,0.72)	0.008	1.65(0.99,2.84)	0.06	4.98(2.53,11.01)	<0.001	< 0.001
Revascularization	18 (11.8)	4 (2.5)	28 (10.0)	0.19(0.05,0.52)	0.001	0.82(0.44,1.57)	0.64	4.34(1.67,14.88)	0.006	0.005
PCI	18	3	25		1					
CABG	0	1	3							
Stent thrombosis	0 (0.0)	0 (0.0)	4 (1.4)		1.00		0.30		0.30	0.20
Bleeding events	14 (9.2)	31 (19.3)	34 (12.1)	2.35(1.22,4.74)	0.02	1.36(0.72,2.69)	0.42	0.58(0.34,0.98)	0.02	0.02
BARC=1	12 (7.9)	28 (17.4)	24 (8.5)	2.46(1.23,5.2)	0.02	1.09(0.54,2.32)	0.86	0.44(0.25, 0.79)	0.009	0.006
Skin ecchymosis	3	10	7							
Hemorrhinia	1	3	2							
Fecal occult blood	4	5	7		1					
Gum bleeding	4	8	6		18					
Hemorrhoidal bleedi	0	2	2							
BARC≥2	2 (1.3)	3 (1.9)	10 (3.6)	1.42(0.23,10.92)	1.00	2.77(0.72,18.16)	0.23	1.94(0.58,8.76)	0.56	0.34
BARC=2	2 (1.3)	1 (0.6)	6 (2.1)	0.47(0.02,4.94)	0.61	1.64(0.37,11.26)	0.71	3.49(0.59,66.24)	0.43	0.52
BARC=3a	0 (0.0)	2 (1.2)	3 (1.1)	120721017017223700142376	0.50		0.56	0.86(0.14,6.56)	1.00	0.61
BARC=3b	0 (0.0)	0 (0.0)	1 (0.4)		1.00		1.00		1.00	1.00

De-escalation strategy leads to increase MI & Ischemic stroke according to KR HIRA 1Y outcome date

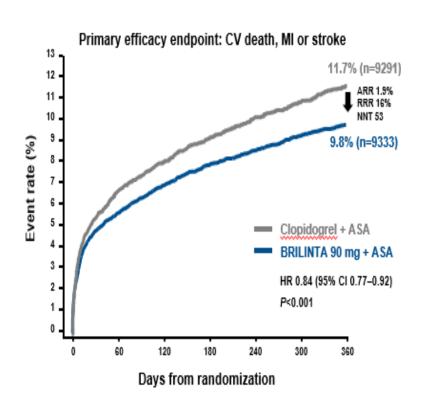

	Maintained	Switching P2Y12 receptor antagonist					
		All	Escalation	De-escalation	Change	Combined	p-Value
BRILINTA							
Patients	2918 (61)	1893 (39)	*	1344	61	488	0.805
All-cause death	30 (1.0)	21 (1.1)		13 (1.0)	1 (1.6)	7 (1.4)	<0.001
Myocardial infarction	219 (7.5)	204 (10.8)	3	138 (10.3)	10 (16.4)	56 (11.5)	0.014
Stroke	14 (0.5)	23 (1.2)	2	15 (1.1)	0 (0.0)	8 (1.6)	0.002
Ischemic	7 (0.2)	20 (1.1)	*	15 (1.1)	0 (0.0)	5 (1.0)	0.073
Hemorrhagic	7 (0.2)	3 (0.2)	·······	0 (0)	0 (0.0)	3 (0.6)	0.003
Bleeding	18 (0.6)	26 (1.4)		15 (1.1)	0 (0.0)	11 (2.3)	

Data are presented as number (%)


One-year incidence of adverse events according to switching P2Y12 receptor antagonist after index discharge.

Do you believe that ischemic risk is becoming stabilized after 1month?

- Newer P2Y12 blockers in ACS
 - Ischemic benefit greater in early phase
 - Bleeding hazard mainly on chronic phase
- Up to 26% of patients are being switched from newer agents to clopidogrel


Ischemic risk is higher than bleeding risk after Primary PCI in STEMI patients



BRILINTA has demonstrated acute and long-term CV protection across two large outcome studies involving ~40,000 patients ^{1,2}

PLATO showed a reduction in subsequent CV events at 12 months in ACS patients taking BRILINTA 90 mg* vs clopidogrel*

PEGASUS showed an ongoing reduction in CV events in high-risk† post-MI patients taking BRILINTA 60 mg* vs placebo*

Conclusion

- Ticagrelor is only proven CV mortality benefit based on PLATO data and the result leads to change real world practice in Asian patients
- De-escalation therapy is still controversial between Pro & Cons.
 - It is not enough to accept as a standard of care in practice
- Ticagrelor comparing with clopidogrel for ACS patients showed a lower risk of CV events including mortality in Korea and Asia area.
- These outcomes are consistent with randomized trial results.

