4:05 PM - 4:13 PM, April 28, 2019 Theater 1, Level 1

Hot Topics DES, BRS and DCB

Lessons from ABSORB: How to Improve the Scaffold Outcomes with Imaging

Yoshinobu Onuma, MD. PhD.

Thoraxcentre, Erasmus Medical Center/ Cardialysis

The Netherlands Norihiro Kogame, MD. Kuniaki Takahashi, MD. Hidenori Komiyama, MD. Kawashima Hideyuki MD. Ono Masafumi MD. Erasmus MC Universitate Medisch Centrum Rotterdam Zafma

CARDICLYSIS Clinical Trial Management - Core Laboratories

Amsterdam University Medical Center, Amsterdam, the Netherlands

Patrick W. Serruys, MD. PhD. Imperial College London, UK

How to Improve the Scaffold Outcomes with Imaging

- What are the imaging parameters associated with acute and late complications?
 - Size mismatch
 - Asymmetry and Eccentricity
 - Malapposition
 - Embedment
- What are the potential causes of very late ScT?

Case example: Absorb Japan (Onuma et al. Eurointervention 2016)

Proximal

Underexpansion due to Device/vessel size mismatch

Event and scaffold-vessel size mismatch

Event and scaffold-vessel size mismatch

BRS sizing and ScT in Mainzer IntraCoronAry database (MICAT)

- A total of 657 consecutive patients who received 925 Absorb BRS in a single center between May 2012 and January 2015 were analyzed.
- Smaller RVD and oversizing were associated with a higher incidence of early ScT, whereas larger RVD and undersizing were associated with late or very late ScT.

3.5 3.75 2.25 2.5 2.753.0 3.25 <2.25 >4.0mm **RVD** intervals. mm to to to to to to 2.5 2.75 3.0 3.25 3.5 3.75 4.0

Unveiling the Mechanisms of Device Failure: In Vivo Imaging from Human Studies

- What are the imaging parameters associated with acute and late complications?
 - Size mismatch
 - Asymmetry and Eccentricity
 - Malapposition
 - Embedment
- What are the potential causes of very late ScT?

How was the eccentricity index calculated in the ABSORB II trial?

Suwannasom P, et al. JACC Cardiovasc Interv (in press)

How was the eccentricity index calculated in the ABSORB II trial?

How was the asymmetry index calculated in the ABSORB II trial?

Parameter for the longitudinal variance in stent diameter

Acute performance in ABSORB II

Distribution of geometrical morphology

Acute performance in ABSORB II

Distribution of geometrical morphology

Acute performance in ABSORB II

the incidence of DoCE over 1 year follow-up

Incidence of DoCE at 1-year follow-up according to acute device performance post-implantation

Suwannasom P, et al. JACC Cardiovasc Interv 2016

How to Improve the Scaffold Outcomes with Imaging

- What are the imaging parameters associated with acute and late complications?
 - Size mismatch
 - Asymmetry and Eccentricity
 - Malapposition
 - Embedment
- What are the potential causes of very late ScT?

The Nidus for Possible Thrombus Formation

Insight From the Microenvironment of Bioresorbable Vascular Scaffold

JACC interv 2016:2167-8 Tenekecioglu et al.

Influence of underlying plaque morphology

Persistent malapposed strut at 2 year (Absorb)

Persistent malapposed strut at 2 year (Absorb)

Receiver-operating curve analysis for predicting persistent ISA at 2-year follow-up

Cutoff value ISA distance	≥ 396 µm	≥ 359 µm
Sensitivity	0.875	0.778
Specificity	0.851	0.881

Sotomi et al. Eur Heart J Cardiovasc Imaging. 2017

Uncorrectable Malapposition (beyond expansion limit)

Dilemma: The vessel size is >4.0mm, while the device size is 3.0mm...The operator is aware of ISA, but considering the expansion limit of 3.5mm, the operator cannot correct malapposition by postdilatation.

1Y

Preprocedural sizing is important!

How to Improve the Scaffold Outcomes with Imaging

- What are the imaging parameters associated with acute and late complications?
 - Size mismatch
 - Asymmetry and Eccentricity
 - Malapposition
 - Embedment

• What are the potential causes of very late ScT?

High incidence of very late scaffold thrombosis at 3 years

Predictors for VLScT: Univariate Cox regression analysis

Variable	Odds ratio [95% confidence interval]	p value
Procedure		
Post-dilatation performed	0.55 [0.11-2.78]	0.471
Post-dilatation maximal pressure (atm)	0.76 [0.51-1.13]	0.176
QCA		
In-device % diameter stenosis (%)	1.07 [0.96-1.19]	0.218
In-device minimum lumen diameter (mm)	2.58 [0.25-26.08]	0.422
Lesion coverage ratio per 0.1 increase	0.74 [0.56-0.98]	0.032
IVUS		
Minimum lumen diameter (mm)	1.80 [0.18-17.74]	0.613
Asymmetry index per 0.1 increase	0.34 [0.10-1.18]	0.088
Expansion index per 0.1 increase	0.58 [0.32-1.04]	0.066
Minimum eccentricity index per 0.1 increase	2.29 [0.63-8.35]	0.208
Deployment index per 0.1 increase	1.78 [0.75-4.22]	0.188
Expansion index <0.6	6.93 [1.24-38.82]	0.028

Serruys et al. 2017 CRT

Event and scaffold-vessel size mismatch

Sotomi et al. EI 2016

Major Imaging findings associated with Late/ Very Late scaffold thrombosis

Mechanisms of Very Late Scaffold Thrombosis: The INVEST Registry

- > Multicenter registry
- Total 36 patients
 (38 lesions) with
 VLScT underwent
 OCT
- VLScT occurred at a median of 20 months
- At the time of VLScT, 83% of patients received aspirin monotherapy, 17% received DAPT
- The leading mechanism of underlying VLScT was scaffold discontinuity (42.1 %)

Yamaji, K. et al. J Am Coll Cardiol.201

Serial changes of strut distribution

360° Angle 0° Distal Length Abso **ABSORB Cohort B1** Meta **Baseline** 6 months 24 5555 XX XX រភ្លូស្ត្ <u>~~</u>, ; ; ;

ABSORB Cohort B2

BRS textbook

455	Baseline	12 months	36 months
333	STANDERS ANTANDAS	HELIMMA HERMAN	
संस			
Proximal	MANARARAR CERETARIA		
llic marker			
months			
SHAFFAFFA HARREA HARREAR		ALLER CONTRACTOR	
		Not available	AND AREAS LELECTRE
			AND MALER
SECTION OF CONTROL OF C			
AN A			
	STATES OF THE STATES		
al OCT	observatio	on up to 36	months,
			1 400/

Onuma et al. JACC int 2014

In seri late discontinuities were observed in 43%, without clinical events

Frequency of late discontinuities between 2 and 3 years (truly serial analysis at lesion level) -by courtesy of Prof. Kimura

* Two lesions were not analyzable at 3 years. # Eight lesions were not analyzable at 3 years.

Imaging findings associated with Late/ Very Late scaffold thrombosis reported in literature

How to Improve the Scaffold Outcomes with Imaging

- Correct Sizing
 - Avoid oversizing (early/late ScT)
 - Avoid under-sizing (Very late ScT)
- Avoid post-procedural eccentricity and asymmetry
- Avoid significant malapposition
- Avoid underexpansion
- Late discontinuity likely plays a role in mechanism of VLScT. Late discontinuities is in general a benign change during the bioresorption process. However, in case struts are not covered by neointima, late discontinuity could be a malignant potential cause of ScT.
- Enhancement of neointimal coverage would be a key to prevent VLScT associated with late discontinuity.
- These imaging analyses suggested a potential benefit of image guidance of acute/late results if the above mentioned parameters were appropriately corrected at the time of implantation.

