Coronary Perforation of Proximal LAD after Debulking for LMCA Ostial Stenosis, Treated with PTEE-covered JoStent

Seung-Jung Park, MD, PhD, FACC

Asan Medical Center, Seoul, Korea

Clinical History

- Male, 62 years old
- Resting chest pain for 3 months
- Electrocardiogram: normal
- Exercise EKG: positive at stage 2 by Bruce protocol
- Echocardiogram : normal LV function without reginal wall motion abnormality

Baseline angiography

Tight stenosis at LMCA

How do you treat this lesion?

- 1. Bypass surgery
- 2. Stenting with bare metal stent
- 3. Debulking alone
- 4. Debulking and stenting
- 5. Stenting with drug eluting stent

Subject

310 Patients (M/F=209/101, Age: 56years)

Elective Stenting in Patients with
 Normal LV function
 258

• Follow-up angiogram at 6 month 178/220 (86%)

Procedural Success Rate: 99%

In-Hospital Clinical Courses

Acute closure	0
Subacute thrombosis	1 (0.5%)
Death	0
Q-MI	0
Emergent CABG	0

6 month Angiographic Restenosis Rate

AMC data

Unprotected Left Main Stenting

Angiographic follow-up rate: 178/220 eligible patients (86%)

42/178 (23.1%)

Restenosis Rate & TLR at overall

Unprotected Left Main Stinting AMC data Survival Curve

Planned Stategy

PCI due to patient preference

Optimal debulking followed by stenting

Debulking first...

Nine cut was done.

Coronary perforation after debulking LAD perforation after DCA

How do you treat this complication?

- 1. High pressure balloon dilatation
- 2. Emergent bypass surgery in all cases
- 3. PTEE-covered stent
- 4. Coil embolization
- 5. Percardiocentesis and let it alone

PTEE-covered stent for perforation

3.5 × 19mm PTEE-covered JoStent at LAD and 4.0 × 9mm NIR stent at LMCA ostium

Good result with successful seal of perforation

Patent stents at follow-up

Coronary Perforation

- Serious complication of coronary angioplasty, which might results in tamponade or death
- The incidence of perforation after DCA has been < 1% which is probably higher than the 0.2% of incidence after conventional balloon angioplasty.

PTEE-coated JoStent

- Constructed using a sandwich technique,
 whereby an ultrathin layer of expandable
 PTFE is placed between two stents
- 2.5–5.0-mm vessels and is available in 9-mm, 12-mm, 16-mm, 19-mm and 26-mm lengths
- Effective tool for sealing the perforation and treating the narrowed lesion

Specific lessons from this case

- ✓ Is IVUS necessary?
- When can we use debulking?

Debulking at LMCA Ostial lesion

Restenosis rate and TLR

IVUS-guided vs. Angiography-guided

	IVUS- guided	Angio- guided	P
Number of lesions	133	83	
Lesion site			
Os	72 (54)	35 (42)	
Body	24 (18)	4 (5)	
Bifurcation	37 (28)	44 (53)	
Debulking before stenting	54 (41)	17 (21)	0.002
Reference vessel DM (mm)	4.1 ± 0.7	3.8 ± 0.6	0.005
MLD (mm)			
Pre-intervention	1.3 ± 0.5	1.1 ± 0.5	0.011
Post-intervention	4.2 ± 0.6	4.0 ± 0.6	0.002
Follow-up	2.8 ± 1.1	2.6 ± 1.1	0.160
Restenosis Rate (%)	24/105 (23)	12/52 (23)	0.980

IVUS findings of Left Main Disease

Soft plaque

63 %

• Fibrous Calcific

18 %

(Mean calcification: 147°)

Eccentricity index

6.5+6.2

Negative Remodeling in Ostial Lesions

47/72 (65%)

(Mean NRI : 0.91 ± 0.25)

Vascular remodeling

Vascular remodeling of Ostial LAD

■ Positive remodeling **■** Intermediate remodeling **■** Negative remodeling

Effect of Debulking AMC data

In Negative Vascular Remodeling

Effect of Debulking AMC data

In Non-negative Vascular Remodeling

Unprotected Left Main Stenting IVUS-guiding is Necessary

- Clinical outcomes may be not different
- Assess unusual lesion morphology (severe negative remodeling, calcium, thrombi, etc)
- We can change treatment strategy
- Optimized final results
- Effective and essential device during DCA

Take home message

- Coronary perforation is not an unusual complication of PCI with debulking.
- Stenting with PTEE-covered JoStent might be a good option for treatment of coronary perforation.
- IVUS may be necessary to investigate the lesion characteristic during LMCA PCI.
- Debulking before stenting might be an effective strategy in LMCA ostial stenosis with non-negative remodeling.