# Cardiac Rehabilitation In Ischemic Heart Disease: After PCI or CABG

1 M

### 성균관의대 강북삼성병원 순환기내과 이 종 영





웃음이야 말로 몸과 마음을 치료하는 명약이다.

SAMSUNG 강북삼성병원

#### 최고의 운동은 걷기이다. 적지도 많지도 않은 음식과 운동은 건강을 위한 가장 훌륭한 처방이다.



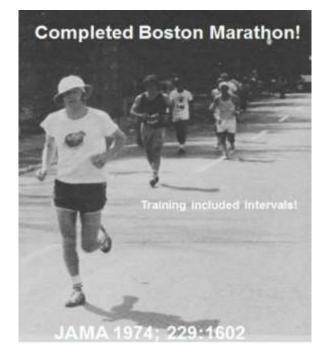


# Cardiac Rehabilitation History: Three turning points

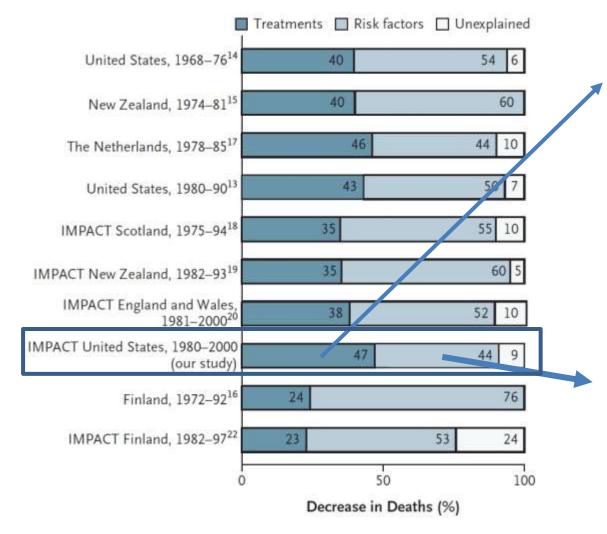
- Before 1951: 6 weeks strict bedrest after myocardial infarction
- ▶ One : 1951: L
  - Trans Assoc



hair treatment"




Dr. Paul D. White and former President Dwight D. Eisenhower at dinner of International Cardiology Foundation, Americana Hotel, New York City on October 29, 1963.


Served complete second term, died in 1969 at 79 years-old

# Cardiac Rehabilitation History: Three turning points

- > Three: Dr. Terry Kavanagh, Toronto Rehabilitation center
  - CR pioneer in Canada
  - Outpatient program started in late 1960's
  - Progressive walk-jog format for exercise training
  - Eight post-MI patients made history in the early 1970's



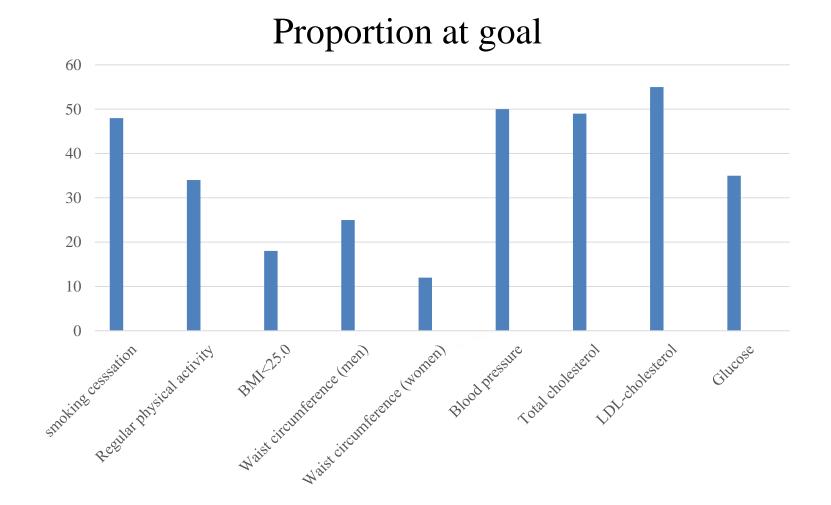
## Explaining the decrease in US death from coronary disease, 1980-2000 MILLING 改革品は思想



47% from treatment

- Secondary prevention after MI or revascularization (11%)
- Initial treatment for MI or unstable angina (10%)
- Treatment for heart failure (9%)
- Revascularization for chronic angina (5%)
- Other therapy (12%)

44% from risk factor modification


- Total cholesterol (24%)
- Systolic blood pressure (20%)
- Smoking (12%)
- Physical activity (5%)

# Insufficient management of risk factors

**EUROASPIRE I,II, III** 

강북삼성병원

SAMSUNG



EUROASPIRE I: 1995-1996 (n=3180) II: 1999-2000 (n=2975) III: 2006-2007 (n=2392)

## Core Components of Cardiac Rehab

#### AHA/AACVPR SCIENTIFIC STATEMENT

Core Components of Cardiac Rehabilitation/Secondary Prevention Programs: 2007 Update

A Scientific Statement From the American Heart Association Exercise, Cardiac Rehabilitation, and Prevention Committee, the Council on Clinical Cardiology; the Councils on Cardiovascular Nursing, Epidemiology and Prevention, and Nutrition, Physical Activity, and Metabolism; and the American Association of Cardiovascular and Pulmonary Rehabilitation

Gary J. Balady, MD, FAHA, Chair, Mark A. Williams, PhD, Co-chair, Philip A. Ades, MD, Vera Bittner, MD, FAHA, Patricia Comoss, RN, Jo Anne M. Foody, MD, FAHA, Barry Franklin, PhD, FAHA, Bonnie Sanderson, RN, PhD, and Douglas Southard, PhD, MPH, PA-C Patient assessment Nutritional counseling Lipid management Blood pressure management Weight management

Diabetes management

Tobacco

cessation

Psychosocial management

Physical activity counseling

Exercise training

Cardiopulm Rehabil Prev. 2007;27:121-29

# 2011 ACC/AHA guideline for CABG

#### PRACTICE GUIDELINE

### 4.9. Cardiac Rehabilitation

#### CLASS I

1. Cardiac rehabilitation is recommended for all eligible patients after CABG (299–301,301a–301d). (Level of Evidence: A)

Society of Cards

- 299. Engblom E, Korpilahti K, Hamalainen H, et al. Quality of life and return to work 5 years after coronary artery bypass surgery. Longterm results of cardiac rehabilitation. J Cardiopulm Rehabil. 1997; 17:29-36.
- 300. Hansen D, Dendale P, Leenders M, et al. Reduction of cardiovascular event rate: different effects of cardiac rehabilitation in CABG and PCI patients. Acta Cardiol. 2009;64:639–44.
- 301. Milani RV, Lavie CJ. The effects of body composition changes to observed improvements in cardiopulmonary parameters after exercise training with cardiac rehabilitation. Chest. 1998;113:599-601.

# 2011 ACC/AHA guideline for PCI

### **ACCF/AHA/SCAI Practice Guideline**

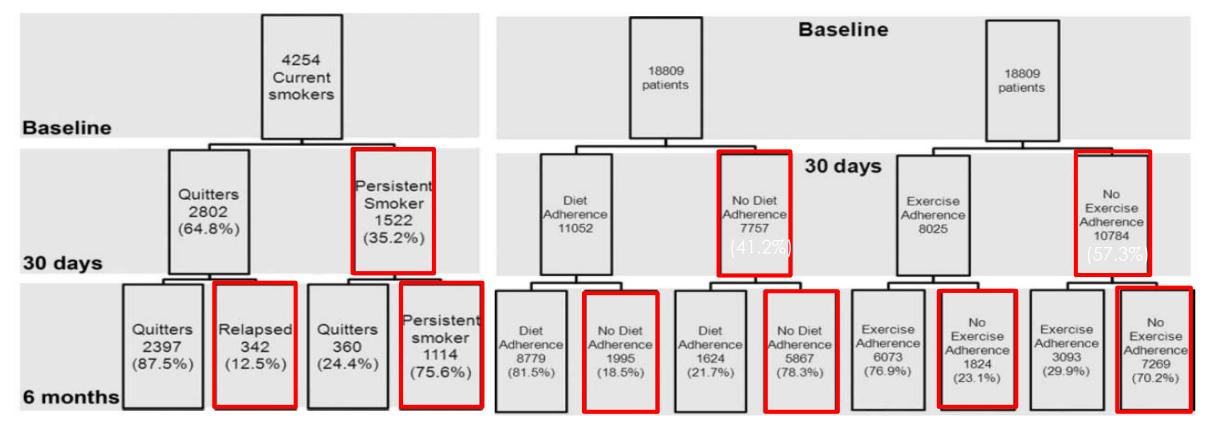
#### 6.4.3. Cardiac Rehabilitation: Recommendation

Class I

1. Medically supervised exercise programs (cardiac rehabilitation) should be recommended to patients after PCI, particularly for moderate- to high-risk patients for whom supervised exercise training is warranted.<sup>796-804</sup> (Level of Evidence: A)

# ACC/AHA Practical Guidelines

| Patient Group             | Recommendation | Evidence |
|---------------------------|----------------|----------|
| CABG                      | 1              | А        |
| STEMI                     | 1              | В        |
| Unstable Angina/NSTEMI    | 1              | В        |
| Chronic Stable Angina/IHD | 1              | А        |
| Heart Failure             | 1              | B (IIa*) |
| CVD in Women              | 1              | В        |
| PCI                       | 1              | А        |
| PAD                       | 1              | А        |


**ICD** - pending

CABG: JACC 2011;58:e123-e210 STEMI: JACC 2013;61:e78-e140 UA/NSTEMI: JACC 2014; epub ahead of print:doi:10.1016/j.jacc.2014.09.017 CSA/IHD: JACC 2012;60(24):2564-2603 HF: JACC 2013;62(16):e147-e239

# Association of Risk factor modification early after Acute Coronary Syndrome

18,809 patients (41 countries)

OASIS 5 randomized trial



#### Circulation. 2010;121:750-758.

## Acute Coronary Syndrome

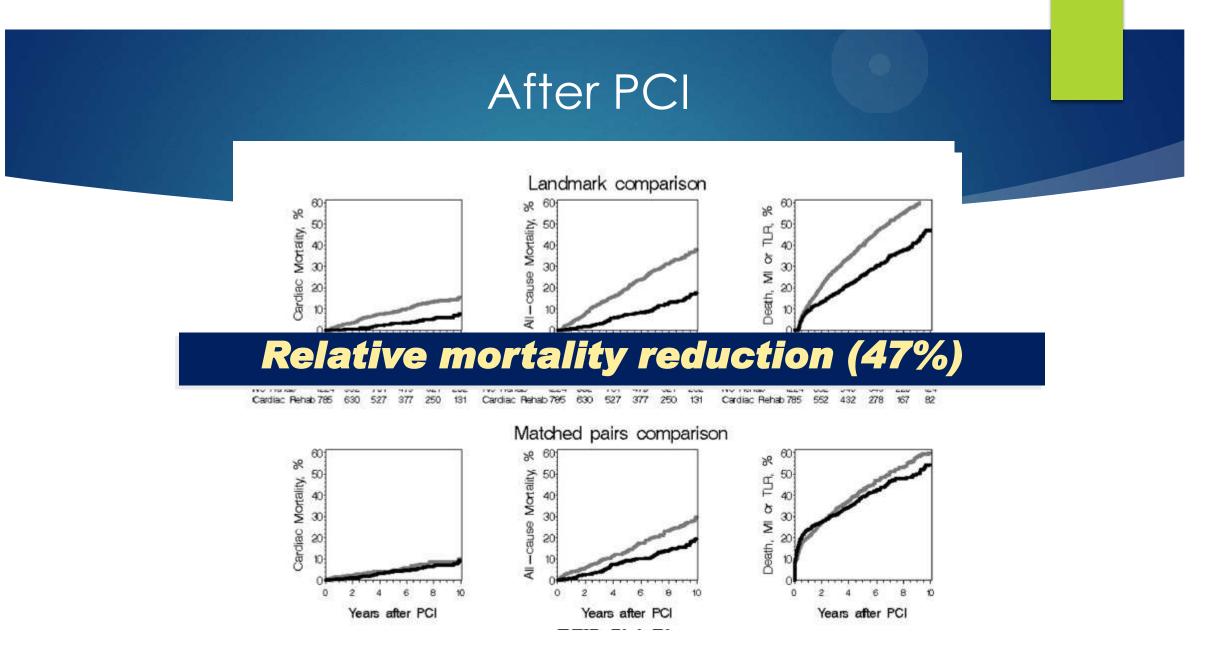
| Characteristic                          | No. of<br>Patients | Odds Ratio for MI or Stroke or Death<br>(95% CI) |     |           | P Value           |          |
|-----------------------------------------|--------------------|--------------------------------------------------|-----|-----------|-------------------|----------|
| Never smoker, diet & exercise           | 2442               | Ŵ.                                               |     |           | Reference categor | у -      |
| Never smoker, either diet/exercise      | 3515               |                                                  |     | <u>18</u> | 1.96(1.45-2.65)   | <0.0001  |
| Never smoker, No diet/exercise          | 2519               |                                                  |     |           | 2.42(1.78-3.29)   | < 0.0001 |
| Former smoker, diet & exercise          | 1793               | -                                                |     |           | 1.25(0.85-1.85)   | 0.2586   |
| Former smoker, either diet/exercise     | 2529               |                                                  |     | <u> </u>  | 2.46(1.80-3.37)   | <0.0001  |
| Former smoker, No diet/exercise         | 1590               |                                                  |     |           | 2.36(1.68-3.30)   | <0.0001  |
| Quit smoking, diet & exercise           | 972                | <u>1</u>                                         |     | -         | 1.62(0.96-2.75)   | 0.0732   |
| Quit smoking, either diet/exercise      | 1143               |                                                  |     |           | 2.03(1.32-3.13)   | 0.0014   |
| Quit smoking, No diet/exercise          | 679                |                                                  | 11  |           | 3.22(2.07-5.03)   | <0.0001  |
| Persistent smoker, diet & exercise      | 379                | _                                                | •   |           | 1.95(1.00-3.82)   | 0.0502   |
| Persistent smoker, either diet/exercise | 590                |                                                  | 2   |           | 2.97(1.83-4.82)   | < 0.0001 |
| Persistent smoker, No diet/exercise     | 536                |                                                  | -   | •         | 3.77(2.40-5.91)   | <0.0001  |
|                                         |                    | -                                                |     | I         |                   |          |
|                                         | 0.5                | 1.0                                              | 2.0 | 3.5       | 6.0               |          |

(Circulation. 2010;121:750-758.)

## After PCI

#### 2,395 consecutive patients in Minnesota (Mayo Clinic) Between1994 and 2008

Propensity score-matched analysis


Propensity score stratification

Regression adjustment with propensity score in a 3-month landmark analysis

Median <u>6.3</u> years

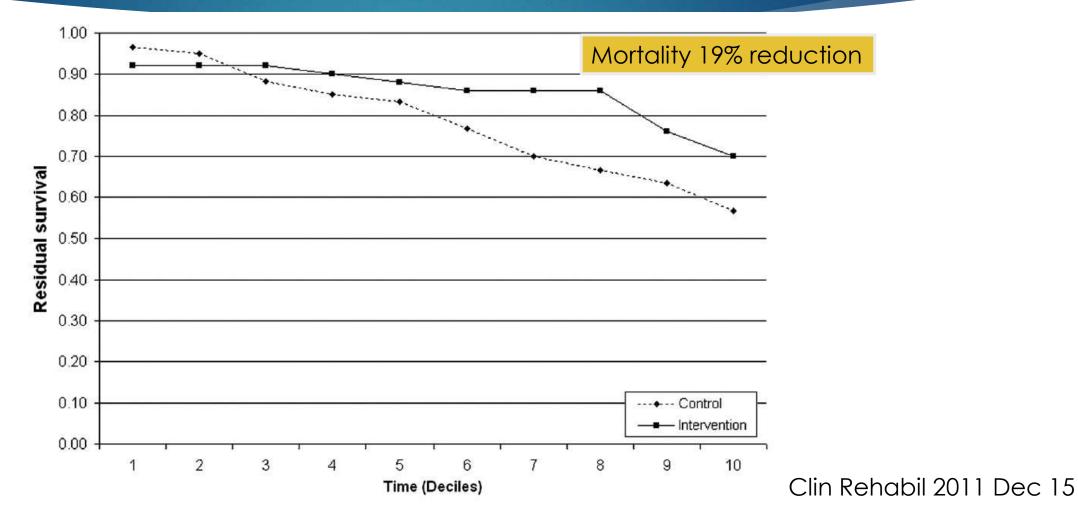
CR participation : 40% of patients

Circulation. 2011;123:2344



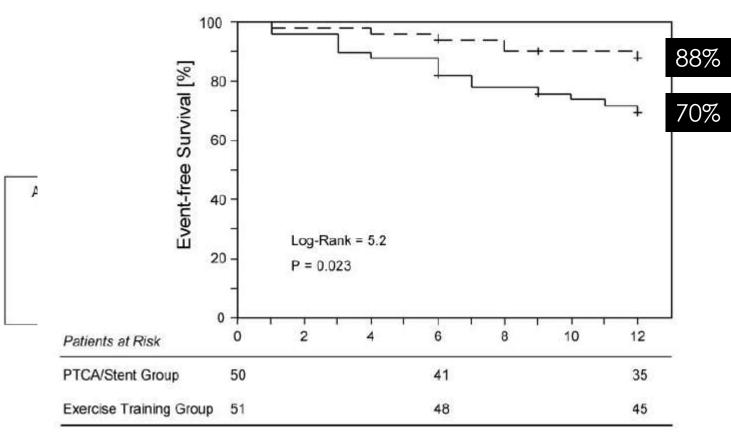
Circulation. 2011;123:2344

# Post-CABG (Dutch Registry)


- 35919 patients with an ACS and/or coronary revascularization or valve surgery
- ▶ 11014 (30.7%) received CR

| Adjusted hazard ratio (95% CI) | Adjusted hazard ratio (95% CI)                                                                                                                | Adjusted hazard ratio (95% CI)                                                                                                                                                                                                                                              |
|--------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                |                                                                                                                                               |                                                                                                                                                                                                                                                                             |
| 0.50** (0.37-0.67)             | 0.58** (0.48-0.71)                                                                                                                            | 0.65** (0.56–0.77)                                                                                                                                                                                                                                                          |
| .48** (0.29–0.78)              | 0.52** (0.38-0.72)                                                                                                                            | 0.60** (0.45-0.78)                                                                                                                                                                                                                                                          |
| 0.50** (0.34–0.73)             | 0.63** (0.50-0.79)                                                                                                                            | 0.68** (0.56-0.83)                                                                                                                                                                                                                                                          |
| .45** (0.31–0.64)              | 0.55** (0.44-0.70)                                                                                                                            | 0.62** (0.51-0.74)                                                                                                                                                                                                                                                          |
| .71 (0.41–1.24)                | 0.67* (0.45-0.98)                                                                                                                             | 0.79 (0.58-1.08)                                                                                                                                                                                                                                                            |
| .43** (0.26-0.71)              | 0.54** (0.38-0.75)                                                                                                                            | 0.55** (0.42-0.74)                                                                                                                                                                                                                                                          |
| 0.58** (0.40-0.84)             | 0.62** (0.49-0.79)                                                                                                                            | 0.71** (0.58-0.86)                                                                                                                                                                                                                                                          |
| 0.55** (0.39–0.77)             | 0.61** (0.48-0.76)                                                                                                                            | 0.68** (0.57-0.82)                                                                                                                                                                                                                                                          |
| .42** (0.23-0.74)              | 0.52** (0.36-0.76)                                                                                                                            | 0.57** (0.41-0.79)                                                                                                                                                                                                                                                          |
|                                | .48** (0.29–0.78)<br>.50** (0.34–0.73)<br>.45** (0.31–0.64)<br>.71 (0.41–1.24)<br>.43** (0.26–0.71)<br>.58** (0.40–0.84)<br>.55** (0.39–0.77) | .48**(0.29-0.78) $0.52**(0.38-0.72)$ $.50**(0.34-0.73)$ $0.63**(0.50-0.79)$ $.45**(0.31-0.64)$ $0.55**(0.44-0.70)$ $.71(0.41-1.24)$ $0.67*(0.45-0.98)$ $.43**(0.26-0.71)$ $0.54**(0.38-0.75)$ $.58**(0.40-0.84)$ $0.62**(0.49-0.79)$ $.55**(0.39-0.77)$ $0.61**(0.48-0.76)$ |

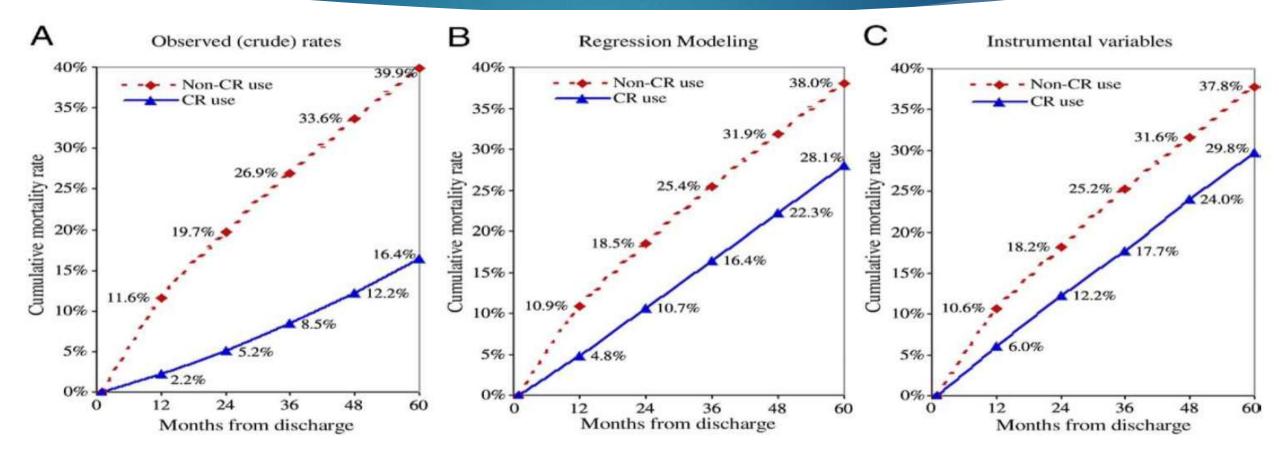
#### EHJ 2015 Apr 17


## Pre-CABG

Patient mortality in the 12 years following enrolment into a pre-surgical cardiac rehabilitation program.

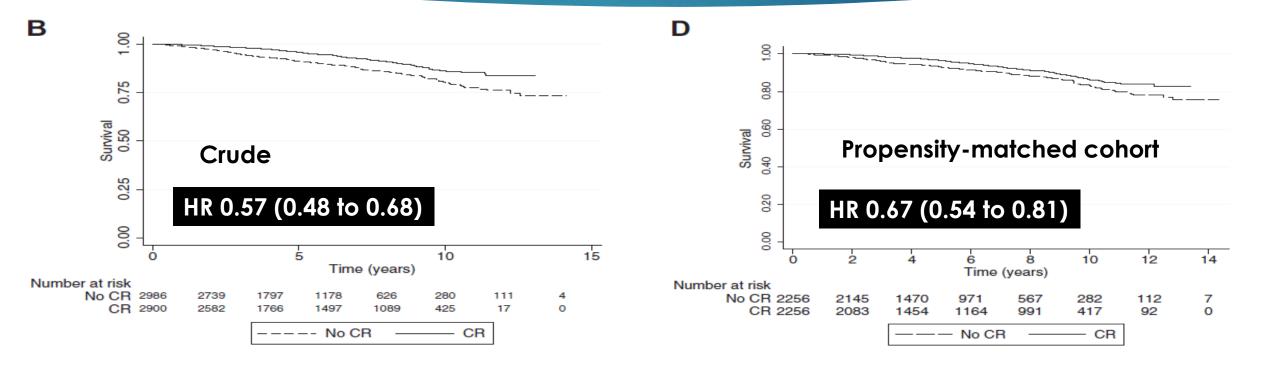


## Stable Angina


1 native coronary artery stenosis of 75% by visual assessment amenable to PCI Clinical events: stroke, target vessel revascularization, PCI of a de novo lesion, or CABG



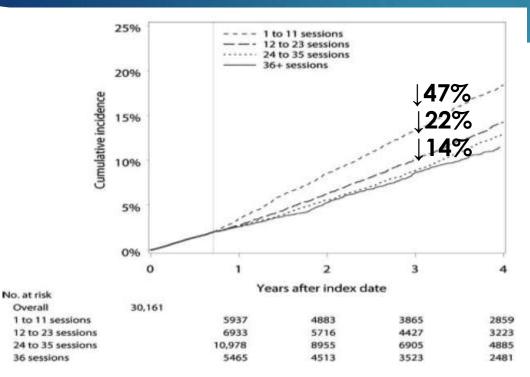
Circulation. 2004;109:1371-1378

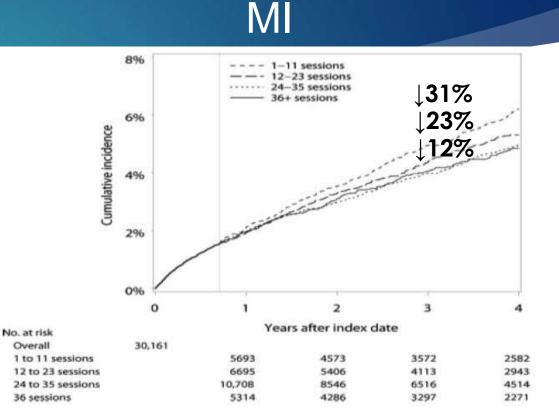

Cardiac Rehabilitation in practice

601,099 U.S. Medicare beneficiaries Only 12.2% of the cohort used CR, and those users averaged 24 sessions 1. to 5-year mortality rates



Suaya JA et al. JACC 2009;54:25

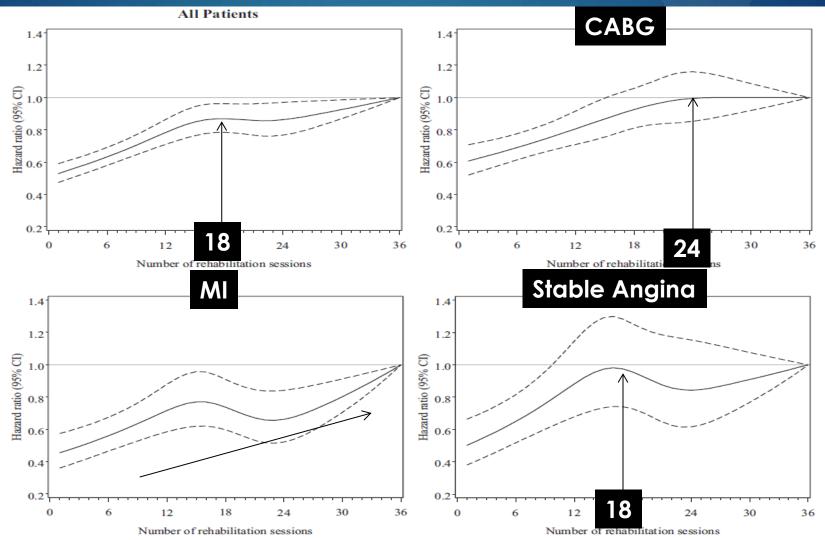

Cardiac Rehabilitation in practice Prospective cohort study of 5886 subjects in coronary artery disease 2900 (49.3%) completed the program <u>Canada, Calgary.</u>




Circulation. 2012;126:677-687.

## The "dose" of Cardiac Rehabilitation

### Death






## **Dose-response relationship !!**

#### Circulation. 2010;121:63-70

## The "dose" of Cardiac Rehabilitation



Circulation. 2010;121:63-70

## From efficacy to effectiveness

|                           | Reduction in mortality | Adherence of<br>therapy |
|---------------------------|------------------------|-------------------------|
| Aspirin                   | 20-25%                 | 86-93%                  |
| Beta-blockers             | 20-30%                 | 66-82%                  |
| ACE inhibitor             | 20%                    | 45-71%                  |
| Statin                    | 22-35%                 | 58-78%                  |
| Cardiac<br>Rehabilitation | 25-40%                 | 15-20%                  |

### Impact of Cardiac Rehabilitation on Angiographic Outcomes after Drugeluting Stents in Patients with De Novo Long Coronary Artery Lesions

Patients requiring PCI with DES for long coronary artery lesions: Lesion length ≥ 25mm (total stent length ≥ 28mm) N = 576

Between March 1, 2009 and May 31, 2012 50% participation in CR (phase II)

Cardiac rehabilitation (+) N = 288

9-month angiographic follow-up N=224 (77.8%)

Propensity-matched

Cardiac rehabilitation (+) N = 224

9-month angiographic follow-up N=176 (78.6%) Cardiac rehabilitation (-) N=288

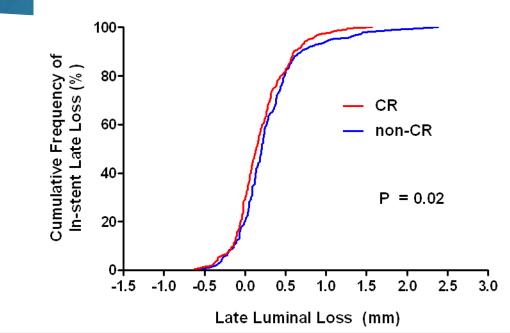
9-month angiographic follow-up N=210 (72.9%)

**Propensity-matched** 

Cardiac rehabilitation (-) N=224

9-month angiographic follow-up N=166 (74.1%)

JY Lee, SJ Park. Am J Cardiol. 2014;Epub ahead of print


## Results on angiographic outcomes after CR

|                                                     | Crude                                       |                                                  |      | Propensity-matched                          |                                                  |      |
|-----------------------------------------------------|---------------------------------------------|--------------------------------------------------|------|---------------------------------------------|--------------------------------------------------|------|
| Characteristics                                     | Cardiac<br>rehabilitation<br>(288 Patients) | Non-cardiac re<br>habilitation<br>(288 Patients) | Р    | Cardiac<br>rehabilitation<br>(224 Patients) | Non-cardiac re<br>habilitation<br>(224 Patients) | Р    |
| Follow-up at 9 months,<br>no. eligible patients (%) | 224 (77.8%)                                 | 210 (72.9%)                                      | 0.21 | 176 (78.6)                                  | 166 (74.1)                                       | 0.26 |
| Late luminal loss (mm)                              |                                             |                                                  |      |                                             |                                                  |      |
| In-segment                                          | 0.11±0.33                                   | 0.17±0.43                                        | 0.08 | 0.10±0.33                                   | 0.17±0.46                                        | 0.09 |
| In-stent (primary endpoint)                         | 0.19±0.33                                   | 0.29±0.45                                        | 0.02 | 0.18±0.31                                   | 0.28±0.47                                        | 0.02 |
| Proximal margin                                     | 0.18±0.46                                   | $0.22 \pm 0.42$                                  | 0.45 | 0.19±0.48                                   | 0.21±0.41                                        | 0.69 |
| Distal margin                                       | 0.06±0.27                                   | 0.08±0.33                                        | 0.61 | 0.06±0.28                                   | 0.07±0.35                                        | 0.70 |
| Angiographic restenosis                             |                                             |                                                  |      |                                             |                                                  |      |
| In-segment                                          | 12 (5.3%)                                   | 14 (6.6%)                                        | 0.48 | 8 (4.5%)                                    | 11 (6.6%)                                        | 0.47 |
| In-stent                                            | 8 (3.5%)                                    | 12 (5.7%)                                        | 0.24 | 5 (2.8%)                                    | 11 (6.6%)                                        | 0.12 |
| Proximal margin                                     | 4 (1.8%)                                    | 3 (1.4%)                                         | 0.82 | 4 (2.3%)                                    | 1 (0.6%)                                         | 0.37 |
| Distal margin                                       | 1 (0.5%)                                    | 2 (0.9%)                                         | 0.60 | 1 (0.6%)                                    | 1 (0.6%)                                         | 0.99 |

JY Lee, SJ Park. Am J Cardiol. 2014; Epub ahead of print

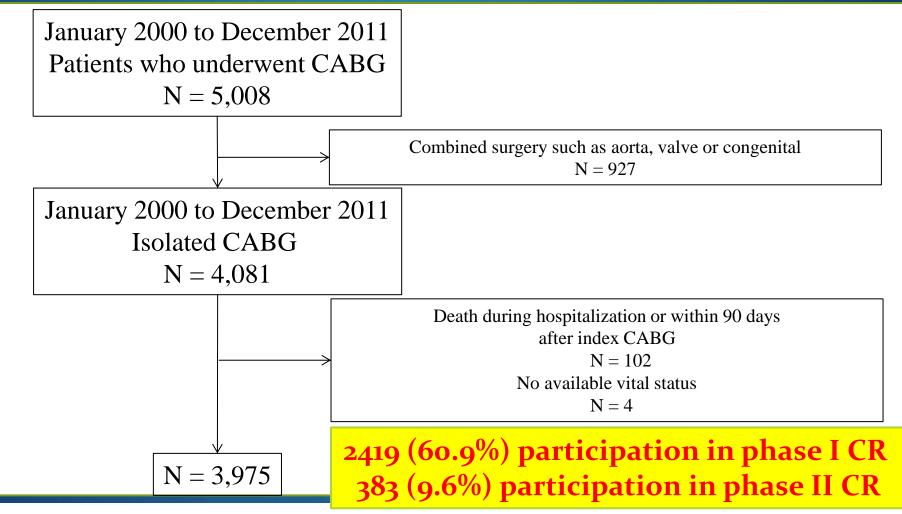
## Impact on Stented Segments

#### 35% relative reduction in late lumen loss



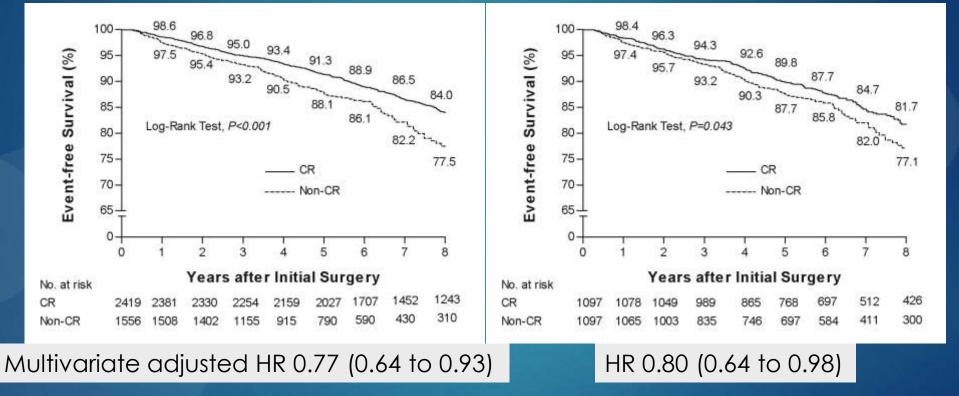
Difference, 0.10 mm; 95% confidence interval, 0.02 to 0.18; P=0.02

# Outpatient cardiac rehab after PCI with DES for long lesions reduces in-stent late lumen loss while improving patient risk profile.


JY Lee, SJ Park. Am J Cardiol. 2014;Epub ahead of print

## Results in physical & biochemical variables

| Clinical Outcomes               | Change¶                | Р      |
|---------------------------------|------------------------|--------|
|                                 | Difference (95% CI)*   |        |
| Current smoking                 | -7.59 (-12.62, -2.56)  | 0.046  |
| Total cholesterol (mg/dL)       | -6.58 (-13.77, 0.60)   | 0.072  |
| Triglyceride (mg/dL)            | -11.71 (-24.05, 0.64)  | 0.063  |
| HDL-cholesterol (mg/dL)         | 2.10 (0.48, 3.71)      | 0.011  |
| LDL-cholesterol (mg/dL)         | -1.47 (-7.42, 4.49,)   | 0.629  |
| hsCRP (mg/dL)                   | -0.08 (-0.16, 0.00)    | 0.042  |
| HbA1C (%)                       | -0.93 (-1.47, -0.38)   | 0.001  |
| Depression, moderate to severe  | -11.16 (-17.41, -4.91) | <0.001 |
| Body weight (kilograms)         | -0.10 (-1.02, 0.82)    | 0.831  |
| Obesity (body mass index >25)   | -10.27 (-15.29, -5.24) | <0.001 |
| VO <sub>2</sub> max (ml/kg/min) | 1.47±4.96              | <0.001 |


JY Lee, SJ Park. Am J Cardiol. 2014; Epub ahead of print

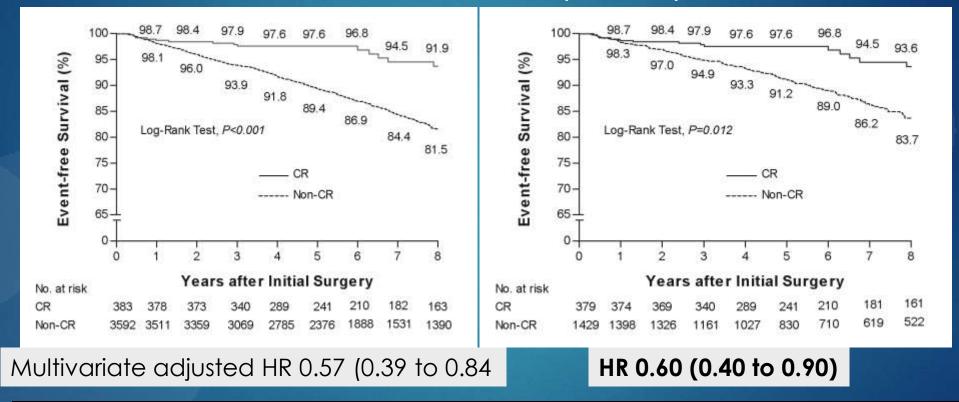
# Impact of Participation in Cardiac Rehab After Coronary Artery Bypass Graft Surgery



JY Lee et al. Int J Cardiol. 2014 Oct 20;176(3):1429-32.

## Impact of Participation in phase I CR for all-cause mortality Crude cohort Propensity-matched cohort




### 20% of mortality reduction in phase I cardiac rehab

JY Lee et al. Int J Cardiol. 2014 Oct 20;176(3):1429-32.

### Impact of Participation in phase II CR for all-cause mortality

#### Crude cohort

### Propensity-matched cohort



### 40% of mortality reduction in phase II cardiac rehab

JY Lee et al. Int J Cardiol. 2014 Oct 20;176(3):1429-32.

## Conclusions

- Cardiac Rehabilitation Programs are still underutilized in real practice.
- Cardiac Rehabilitation Program showed beneficial clinical outcomes, especially in mortality, in patients with ischemic heart disease.
- Even with dramatic improvement in PCI or CABG,

Comprehensive Cardiac Rehabilitation Program must be implemented for care.