Chimney technique for juxtarenal AAA: delicate

Gi-Young Ko, MD, PhD Interventional Division Department of Radiology Asan Medical Center University of Ulsan College of Medicine Seoul, KOREA

Speaker name: Gi-Young Ko

I have the following potential conflicts of interest to report:

- Consulting
- Employment in industry
- Stockholder of a healthcare company
- Owner of a healthcare company
- Other(s)

I do not have any potential conflict of interest

IFU of stent grafts

- All stent grafts have their own specific IFUs
- According to manufactures' IFUs, AAA with a short neck (<10 mm) or severe angulation (>60⁰) should not be treated by standard EVAR
- Several investigators have reported their experiences of standard or modified EVAR with off-label use

Product	Infrarenal neck length	Infrarenal angle
Endurant II	≥10 mm	≤ 60 ⁰
Endologix AFX	≥15 mm	≤ 60 ⁰
Excluder	≥15 mm	≤ 60 ⁰
Zenith Flex	≥15 mm	≤60 ⁰
Nellix	≥10 mm	≤ 60 ⁰
Ovation	≥7 mm	≤60 ⁰

CHIMNEY EVAR

- Snorkel, periscope, or parallel stent graft
- A stent graft deployed into the SMA or renal artery parallel to the main aortic stent graft, like a chimney, to preserve flow to vital branches covered by the aortic stent graft
 - $\checkmark\,$ Extended the length of the proximal aortic neck
 - ✓ High technical success & primary patency rates
 - $\checkmark~$ No waiting time for a specific SG
 - ✓ Cost effectiveness compared to fenestrated SG

CHIMNEY EVAR

- 1. The target artery to be stented should be cannulated from arm access, then a sheath and a chimney stent advanced into the artery
- Main aortic device is delivered from the conventional CFA access
 ✓ 20-30% oversizing of main aortic device (c.f. 10-20% oversizing for C-EVAR)
- 3. Deploy a main aortic device first, and then deploy a chimney stent
 - ✓ Place a chimney stent 5~10 mm above a main aortic device
- 4. Inflate molding balloons simultaneously
- Access a. injury, gutter type Ia endoleak, & chimney stent occlusion
- Limited availability of covered stents for chimney

The best conditions for parallel stenting during EVAR: An vitrostudyMestres G, Eur J Vasc Endovasc Surg 2012

- To identify what degree of oversizing, in combination with what type of parallel stent, may result in the most adequate fit in a juxtarenal AAA
 - ✓ Endurant/Excluder + 6 mm viabahn or V12
 - ✓ Increasing diameter oversizing (15%, 30%, 40%) significantly decreased gutter area (p <0.001)
 - ✓ Detect main body infolding of 40% oversized stent graft
 - ✓ Excluder + V12: lower stent compression but wider gutters
 - ✓ Endurant + viabahn: maximum stent compression
 - $\checkmark\,$ Better apposition was achieved when using 30% endograft oversizing

Natural history of gutter-related type Ia endoleak after chimneyEVARUllery BW, J Vasc Surg 2017

- 60 patients with 111 chimney EVAR (97 renal, 12, SMA, & 2 celiac)
- Early gutter type Ia endoleak: 30% (n = 18)
- Spontaneous resolution in 44%, 65%, and 88% at 6, 12, & 18 mo. F/U
- Reintervention related to persistent gutter endoleak: 2 patients (3%)
- Gutter endoleak was not associated with long-term anticoagulation, degree of oversizing, & stent type and diameter

Fig 3. Spontaneous resolution of early (<30-day) type Ia gutter endoleaks following chimney endovascular aneurysm repair (ch-EVAR): entire cohort **(A)** and long vs short gutter endoleaks **(B)**. *Red square* indicates solitary patient who required early type Ia endoleak-associated secondary intervention performed at 4 months postprocedure). *CI*, Confidence interval.

Donas KP, et al. PROTAGORAS trial. J Vasc Surg 2016; 63

- Prospective collected data; Endurant + iCast V12
- 187 chimney stents in 128 patients
- TS 100%
- Mean radiologic F/U: 25 \pm 17 mo.
- Late new onset type Ia endoleak 1.6%
- Primary chimney stent patency at 2 years FU: 96%
- Freedom from chimney stent-related reintervention: 93%

Complication	Reintervention	Target vessels, %	Patients, %
High-grade stenosis of renal chimney	Endovascular management	6 (3)	6 (4.6)
Chimney graft occlusion	Endovascular management	6 (3)	$4(3.2)^{a}$
	Iliorenal extra-anatomic bypass	1 (0.5)	1 (0.8)
	Conservative treatment	1 (0.5)	1 (0.8)
Endotension	Surgical ligation of the aneurysm sac		1 (0.8)
Endoleak Ia	Transformation of single to multiple chimneys and tube placement ^b		2 (1.6)
Endoleak Ib	Distal iliac limb extension		1(0.8)
Endoleak Ib and infection	Surgical conversion		1 (0.8)
Endoleak type III	Iliac limb placement		2 (1.6)
Inadvertent coverage of the SMA	Endovascular management		1 (0.8)

Table III. Overview of complications and therapeutic modalities for the PROTAGORAS cohort

Donas KP, et al. PERICLES ch-EVAR registry. Ann Surg 2015; 262

- Retrospective study
- 898 chimney stents in 517 patients from USA & European centers
 - ✓ 692 renal, 156 SMA, & 50 celiac chimney stents
 - ✓ Stents: 49% BECS, 40% SECS, 11% BEBMS
- 94% primary patency at 17 mo. F/U
- Persistent type Ia endoleak, 0.4%; gutter type Ia endoleak 2.9%
- These results support ch-EVAR as a valid off-the-shelf and immediately available alternative in the treatment of complex abdominal EVAR.

BECS, balloon expanding covered stent SECS, self expandable covered stent BEBMS, balloon expanding bare metal stent

Zenith & BMS

M/72, EVAR with chimney stent grafts to the bilateral renal arteries

48 mo. F/U Cr: 1.09 mg/dL F/83, EVAR with a chimney stent graft to the left renal artery due to angulated proximal neck

Endurant + Viabahn

36 mo. F/U

Li Y, et al. Fenestrated & chimney technique for juxtarenal AAA: A systemic review and pooled data analysis. Sci Rep 2016

• 9 F-EVAR cohort (542 patients) & 8 Ch-EVAR cohort (158 patients)

Preoperative patient demographics and main outcomes in F-EVAR and CH-EVAR cohorts.

✓ Both techniques are attractive options for juxtarenal AAA treatment with encouraging early and mid-term outcome

	F-EVAR	CH-EVAR	P value
Preoperative			
Age	74 (47-86)	75 (59-88)	
Aneurysm diameter	64 (47-112)	64.5 (33-110)	
Length of aneurysm neck	6.7±3.6(0-14.4)	$2.3 \pm 4.3 (0-10)$	
Outcomes			
Operative time (min)	261 (80-554)	178 (75-810)	
Fluoroscopy time (min)	64 (5-223)	54.6 (15-290)	
Contrast dose (ml)	166 (90-465)	146 (45-465)	
Estimated blood loss (ml)	534 (50-7000)	332 (30-2204)	
Technique success rate	98.8%	97.4%	0.15
30-day mortality	6 (1.1%)	8 (3.8%)	0.02
Over-30-day mortality	29 (5.35%)	15 (9.5%)	0.01
All-cause mortality	35 (6.46%)	21 (13.3%)	0.0002
Patency	95.9%	97%	0.34
Follow-up (month)	12.8 (1-65)	14.7 (0-46)	
Length of stay (day)	7 (1-100)	4.4 (2-50)	
Secondary intervention rate	58 (10.7%)	17 (9.5%)	0.98

Take home message

- Ch-EVAR for treating juxtarenal AAA is technically feasible
- Type Ia gutter endoleak following Ch-EVAR is not uncommon, however it can be disappeared spontaneously or treated via endovascular method
- Symptomatic chimney stent occlusion is rare

THANK YOU FOR YOUR ATTENTION

