Imaging and Physiology
Coronary Physiology
Presentation Theater 1, Level 1

Can Angio-FFR Change Our Cath Lab Practice?

Yoshinobu Onuma, MD. PhD.

Thoraxcentre, Erasmus Medical Center/ Cardialysis, the Netherlands

Norihiro Kogame, MD.

Amsterdam University Medical Center, Amsterdam, the Netherlands Patrick W. Serruys, MD. PhD.
(U) Amsterdam Umc

Imperial College London, UK

Angio-derived FFR in cath lab

-What is the basic principle of angio-derived FFR?

- What is the diagnostic performance of angioderived FFR?
- Can we use it in complex lesions?
- Can we use angio-derived FFR to PCI planning (Simulation of post procedural FFR, tandem lesion, number of stent, and stent length)?
- What is the potential clinical impact of post procedural QFR?
- From late loss to QFR: new parameter of device efficiency and QFR for event adjudication in the context of clinical trial

History of physiology

1975 D. Young $\frac{\Delta p}{\rho U^{2}}=\frac{K_{e}}{R e}+\frac{K_{t}}{2}\left(\frac{A_{0}}{A_{1}}-1\right)^{2}$
 $198{ }_{\downarrow}$ R. Kirkeeide
1988_{\downarrow} PW. Serruys

Velocity wire
Flow-velocity validation
1991 Pressure wire
1993 P.W. Serruys (Double-wire Pressure-velocity)
1993 Håkan Emanuelsson, P.W. Serruys (SFR)
1993 Carlo Di Mario, P.W. Serruys (Hyperemic Index)

Fast virtual functional assessment of intermediate coronary lesions using routine angiographic data and blood flow simulation in humans: comparison with pressure wire fractional flow reserve
 Lampros S. Lakkas ${ }^{1}$, MD; Shimpei Nakatani ${ }^{3}$, MD; Christos V. Bourantas ${ }^{3}$, MD, PhD; Jurgen Ligthart ${ }^{3}$, BSc; Yoshinobu Onuma ${ }^{3}, \mathrm{MD}, \mathrm{PhD}$; Mauro Echavarria-Pinto ${ }^{4}$, MD; Georgia Tsirka ${ }^{1}$, MD; Anna Kotsia ${ }^{5}$, MD; Dimitrios N. Nikas ${ }^{1}$, MD, PhD, FESC; Owen Mogabgab ${ }^{5}$, MD; Robert-Jan van Geuns ${ }^{3}$, MD, PhD ; Katerina K. Naka ${ }^{1}$, MD, PhD, FESC; Dimitrios I. Fotiadis ${ }^{6}$, PhD ; Emmanouil S. Brilakis ${ }^{5}$, MD, PhD Héctor M. Garcia-Garcia ${ }^{3}$, MD, PhD; Javier Escaned ${ }^{4}$, MD, PhD, FESC; Felix Zijlstra ${ }^{3}$, MD, PhD; Lampros K. Michalis ${ }^{1}$, MD, MRCP, FESC; Patrick W. Serruys ${ }^{3,7 *}$, MD, PhD, FESC

- Virtual functional assessment index (vFAI) was derived from 3D-QCA.
- A Comparison with wire-FFR was studied in 139 lesions with intermediate stenosis.

Eurointervention 2014

Fractional Flow Reserve Calculation From

3-Dimensional Quantitative Coronary

 Angiography and TIMI Frame CountA Fast Computer Model to Quantify the Functional Significance of Moderately Obstructed Coronary Arteries

Shengxian Tu, PHD, ${ }^{*}$ Emanuele Barbato, MD, PHD,\dagger Zsolt Köszegi, MD, PHD, \ddagger Junqing Yang, MD,§ Zhonghua Sun, MD, \| Niels R. Holm, MD, đ Balázs Tar, MD, \ddagger Yingguang Li, MSc,* Dan Rusinaru, MD, \dagger William Wijns, MD, PHD, \dagger Johan H.C. Reiber, PHD*

- $\quad \mathrm{FFR}_{\mathrm{QCA}}$ was derived from 3D QCA and TIMI (Thrombolysis In Myocardial Infarction) frame count.
- $\quad \mathrm{FFR}_{\mathrm{OcA}}$ was retrospectively compared with wire-based FFR in 77 intermediate lesions.

Available software in cath lab

Quantitative Flow Ratio (QFR)

Data Transmission System
Two image runs with angle difference $\geq 25^{\circ}$

3D Reconstruction

Modified Frame Count

Without Inducing Hyperemia

The Quantitative Flow Ratio (QFR)

The Quantitative Flow Ratio (QFR)

FFR angio (Cathworks)

The $F F R_{\text {angio }}$ is calculated as the ratio between the flow rate in the stenosed artery, and the flow rate in the same artery in the absence of the stenosis

vFFR: flow of computation

2 angiograms 30 degrees apart for 3D
reconstruction

A pressure drop is
calculated based on 3D
reconstruction

vFFR without induced hyperemia

Angio-derived FFR in cath lab

- What is the basic principle of angio-derived FFR?
- What is the diagnostic performance of angioderived FFR vs. wire-based FFR?
- Can we use QFR in complex lesions?
- Can we use angio-derived FFR to PCI planning (Simulation of post procedural FFR, tandem lesion, number of stent, and stent length)?
- What is the potential clinical impact of post procedural QFR?
- From late loss to QFR: new parameter of device efficiency and QFR for event adjudication in the context of clinical trial

Diagnostic performance of angiography-derived fractional flow reserve: a systematic review and Bayesian meta-analysis

Carlos Collet ${ }^{1,2}$, Yoshinobu Onuma ${ }^{3,4}$, Jeroen Sonck ${ }^{2}$, Taku Asano ${ }^{1}$, Bert Vandeloo ${ }^{2}$, Ran Kornowski ${ }^{5}$, Shengxian Tu ${ }^{6}$, Jelmer Westra ${ }^{7}$, Niels R. Holm ${ }^{7}$, Xu Bo ${ }^{8}$, Robbert J. de Winter ${ }^{1}$, Jan G. Tijssen ${ }^{1}$, Yosuke Miyazaki ${ }^{4}$, Yuki Katagiri ${ }^{1}$, Erhan Tenekecioglu ${ }^{4}$, Rodrigo Modolo ${ }^{1}$, Ply Chichareon ${ }^{1}$, Bernard Cosyns ${ }^{2}$, Daniel Schoors ${ }^{2}$, Bram Roosens ${ }^{2}$, Stijn Lochy ${ }^{2}$, Jean-Francois Argacha ${ }^{2}$, Alexandre van Rosendael ${ }^{9}$, Jeroen Bax ${ }^{9}$, Johan H.C. Reiber ${ }^{10,11}$, Javier Escaned ${ }^{12}$, Bernard De Bruyne ${ }^{13}$, William Wijns ${ }^{14}$, and Patrick W. Serruys ${ }^{15}$ *
${ }^{1}$ Department of Cardiology, Academic Medical Center, University of Amsterdam, Amsterdam, Netherlands; ${ }^{2}$ Department of Cardiology, Universitair Ziekenhuis Brussel, Brussel, Belgium; ${ }^{3}$ Cardialysis BV, Rotterdam, The Netherlands; ${ }^{4}$ Thoraxcenter, Erasmus MC, Rotterdam, The Netherlands; ${ }^{5}$ Cardiology Department, Rabin Medical Center, Belinson Hospital Affiliated to the "Sackler" Faculty of Medicine, Tel Aviv University, Petah Tikva, Israel; ${ }^{6}$ Biomedical Instrument Institute, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China; ${ }^{7}$ Department of Cardiology, Aarhus University Hospital, Aarhus, Denmark; ${ }^{8}$ Fu Wai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences, Beijing, China; ${ }^{9}$ Department of Cardiology, Leiden University Medical Center, The Netherlands; ${ }^{10}$ Division of Image Processing (LKEB), Department of Radiology, Leiden University Medical Center (LUMC), Leiden, The Netherlands; ${ }^{11}$ Medis Medical Imaging Systems, Leiden, The Netherlands; ${ }^{12}$ Hospital Clinico San Carlos IDISSC and Universidad Complutense de Madrid, Madrid, Spain; ${ }^{13}$ Cardiovascular Center Aalst, OLV Clinic, Aalst, Belgium; ${ }^{14}$ The Lambe Institute for Translational Medicine and Curam, National University of Ireland, Galway, Saolta University Healthcare Group, Galway, Ireland; and ${ }^{15}$ Department of Cardiology, Imperial College London, London, UK

Received 16 January 2018; revised 3 April 2018; editorial decision 25 June 2018; accepted 31 July 2018

Diagnostic performance of angiography-derived FFR a systematic review and Bayesian meta-analysis

Tu et al. CFD

Morris et al. CFD

Kornowsky et al. FFRangio

Papafaklis et al. Math

Trobs et al. CFD

Tu et al. QFR Math

Diagnostic performance of angiography-derived FFR a systematic review and Bayesian meta-analysis

Study	Number of lesions	Technology	Process	Reference Standard	Threshold	Prevalence of ischaemia (\%)
WIFI II, 2017	240	QFR	Mathematical formula	IV FFR	≤ 0.8	28
FAVOR II Europe and Japan, 2017	317	QFR	Mathematical formula	IV FFR	≤ 0.8	29
Tar et al., 2017	68	MEDIS 3D-QCA	Mathematical formula	IV FFR	≤ 0.8	42
Yazaki et al., 2017	151	QFR	Mathematical formula	IV FFR	≤ 0.8	27
FAVOR II China, 2017	328	QFR	Mathematical formula	IV FFR	≤ 0.8	32
FAVOR Pilot, 2016	84	QFR	Mathematical formula	IV FFR	≤ 0.8	24
Morris et al., 2013	35	Virtual fractional flow reserve derived	CFD	IV FFR	≤ 0.8	17
Pellicano et al., 2017	203	$\mathrm{FFR}_{\text {angio }}$	Rapid flow analysis	IV or IC FFR	≤ 0.8	32
Tu et al., 2014	77	FFReca	CFD	IV FFR	≤ 0.8	23
Kornowski et al., 2016	101	FFR ${ }_{\text {angio }}$	Rapid flow analysis	IV or IC FFR	≤ 0.8	30
Trobs et al., 2015	100	Syngo IZ3D for anatomic reconstruction	CFD	IV or IC FFR	≤ 0.8	23
van Rosendael et al., 2017	15	QFR	Mathematical formula	IV FFR	≤ 0.8	13
Legutko et al., 2017	123	QFR	Mathematical formula	NA	≤ 0.8	40

Diagnostic performance of angiography-derived FFR a systematic review and Bayesian meta-analysis

Forest Plots of Sensitivity and Specificity

Studies	TP	FP	TN	FN	
WIFI Study	66	20	132	22	
FAVOR II Europe \& Japan	92	26	187	12	
Papafaklis et al.	47	12	75	5	
Tar et al.	24	4	21	8	

Estimates $\left.\begin{array}{cc}95 \% \text { Credible } \\ \text { intervals }\end{array}\right\}$

Estimates

Yaz et al. FAVOR II China FAVOR Pilot Morris et al. Pellicano et al. Tu et al. Kornowski et al. Trobs et al. van Rosendael et al. Legutko et al.

Summary

Forest Plots o

Studies WIFI Study FAVOR II Europe \& Jap Papafaklis et al. Tar et al. Tar et al.
Yazakiet al. FAVOR II China FAVOR Pilot Morris et al. Pellicano et al. Tu et al. Kornowski et al. Kornowski et Trobs et al. van Rosendael et al. Legutko et al.

Summary

Sensitivity 89\% (95\% Crl 84\% to 93\%)
Specificity 90\% (95\% Crl 88\% to 92\%) +LR 9.05 (95\% Crl 7.1 to 11.3) -LR 0.12 (95\% Crl 0.07 to 0.19)

9.71	5.69 to 15.17								
10.32	7.43 to 15.05								
8.51	5.50 to 12.87								
11.01	7.45 to 17.63								
8.79	5.65 to 13.60								
9.12	5.08 to 14.87								
10.98	7.25 to 16.48								
9.05	7.06 to 11.29								
		∞	${ }_{0} 0$	0.10	0.15	0.20	0.5	${ }^{0.30}$	${ }^{035}$

0.02 to 0.29 0.05 to 0.19 0.09 to 0.38 0.02 to 0.17 0.09 to 0.34 0.03 to 0.37
0.01 to 0.12 0.01 to 0.12
7.06 to 11.29

Bayesian Meta-regression

A. Method for pressure drop computation

B. Software for FFR estimation

C. Type of analysis

No difference in Diagnostic Performance (AUC) between type of method for pressure drop computation, Software or online/offline analysis.

On-line vs Off-line QFR: Insight from FAVOR III China

ROC for the discrimination of functionally significant stenosis

On-line
AUC 0.96
Accuracy 92.7

Off-line AUC 0.97
Accuracy 93.3

On-line QFR showed excellent predictive value and comparable accuracy to Off-line.

Impact of QFR on clinical outcomes is under-investigation

Pre-procedural QFR

FAVOR III -RCT-

Europe-Japan

- QFR vs FFR
- Non-inferiority study

1:1 Randomization

FFR-Guided
$N=1,000$

- FFR ≤ 0.8 : PCI treatment
- FFR>0.8: Medica alone

China

- QFR vs present practice
- Superiority study

- Primary endpoint: MACE at 1Y: all-cause death, MI, any ID revascularization

Secondary Endpoints: Procedure time, contrast volume, fluoroscopy time etc.

Secondary Endpoints: Cost-effectiveness at $1 Y$ etc.

NCT03656848

Angio-derived FFR in cath lab

- What is the basic principle of angio-derived FFR?
- What is the diagnostic performance of angioderived FFR vs. wire-based FFR?
- Can we use QFR in complex lesions?
- Can we use angio-derived FFR to PCI planning (Simulation of post procedural FFR, tandem lesion, number of stent, and stent length)?
- What is the potential clinical impact of post procedural QFR?
- From late loss to QFR: new parameter of device efficiency and QFR for event adjudication in the context of clinical trial

Case example of functional SYNTAX score calculation by QFR

Asano T, OnumaY, Serruys PW et al. JACC Cardiovasc Interv. 2019 Feb 11;12(3):259-270.

Reclassification of functional SYNTAX score

 derived from QFR and iFR/FFR ($\mathrm{N}=138$)

Functional SYNTAX score derived from QFR yielded significantly improved risk classification compared to anatomic SYNTAX Score.

Angio-derived FFR in cath lab

- What is the basic principle of angio-derived FFR?
- What is the diagnostic performance of angioderived FFR vs. wire-based FFR?
- Can we use QFR in complex lesions?
- Can we use angio-derived FFR to PCI planning (Simulation of post procedural FFR, tandem lesion, number of stent, and stent length)?
- What is the potential clinical impact of post procedural QFR?
- From late loss to QFR: new parameter of device efficiency and QFR for event adjudication in the context of clinical trial

QFR version 2.0 (work in progress)

- Full screen user interface
- Easy and visible workflow
- Automatic end-diastolic detection from ECG
- Reduction of all redundant information on and around the images
- Reduction of mouse miles

Angio-derived FFR in cath lab

- What is the basic principle of angio-derived FFR?
- What is the diagnostic performance of angioderived FFR vs. wire-based FFR?
- Can we use QFR in complex lesions?
- Can we use angio-derived FFR to PCI planning (Simulation of post procedural FFR, tandem lesion, number of stent, and stent length)?
- What is the potential clinical impact of post procedural QFR?
- From late loss to QFR: new parameter of device efficiency and QFR for event adjudication in the context of clinical trial

Impact of QFR on clinical outcomes is under-investigation

Post-procedural QFR

HAWKEYE NCT02811796

-prospective observational study-
Aim: To assess the relationship between post-QFR and adverse events

600 patients

Successful PCI with post procedural QFR assessment (off-line)

Primary endpoint: DOCE at 1Y: cardiac death, TV-MI, TLR

Primary result will be presented at euroPCR2019

QFR for Event Adjudication of Clinically Indicated Repeat Revascularization
 The Academic Research Consortium-2 Consensus Document (ARC-2)

Table 7 Fractional Flow Reserve and Quantitative Coronary Analysis for Event Adjudication of Clinically Indicated Repeat Revascularizations

1:Core laboratory-reported fractional flow reserve ≤ 0.80 or instant wave-free ratio ≤ 0.89

2:Site-reported fractional flow reserve ≤ 0.80 or instant wave-free ratio ≤ 0.89
3. Quantitative coronary analysis* diameter stenosis $>50 \%$ (based on the average of multiple views) with either recurrent symptoms or positive noninvasive functional test
4. Quantitative coronary analysis* diameter stenosis $>70 \%$ (based on the average of multiple views) regardless of other criteria
5. Quantitative coronary analysis diameter stenosis $>70 \%$ (based on the worst view) regardless of other criteria

ARC-2 gives priority to functional assessment with FFR or equivalent technique.

ARC-2 recommends that resting dp/da, contrast/saline FFR, QFR, and FFR $_{\text {CT }}$, although not yet widely available, can be used for adjudication purposes if specified in the protocol.

Conclusion

\checkmark Commercially available online-QFR and on-site-FFR ${ }_{\text {angio }}$ demonstrated feasibility and similar diagnostic accuracy compared to wire-based FFR in the prospective observational trials. Meta-analysis demonstrated that angio-derived FFR is reliable surrogate for invasive wire-based FFR irrespective of computational approaches and software packages.
\checkmark Assessment of functional SYNTAX score by QFR was feasible in selected 3VD cases. With a new version of software, simulation of post-stenting QFR is feasible, which could further guide planning of PCI (stent length, number of stent etc).
\checkmark In context of clinical trial, angio-derived FFR could be used to evaluate efficacy of coronary device. According to ARC-2, in the context of clinical trial, QFR could be utilized to adjudicate ischemia driven revascularization.
\checkmark Impact of both pre- and post-procedural QFR on clinical outcomes is underinvestigation in prospective randomized trials. If clinical noninferiority to wire based FFR and/or superiority to angio-guided approach is established, angioderived FFR could become standard approach.
\checkmark Angio-derived FFR will change our practice in cath lab.

