Driver-Cobalt Alloy Stent Delivers

Alan C. Yeung, MD

Driver Coronary Stent System

New cobalt alloy

Wrap-crimp for low profile

5F Compatible*

*3.0,3.5, 4.0 mm diameters

Thin struts

SECURE TECHNOLOGY

Direct stenting

Modular design

DISCRETE TECHNOLOGY

DRIVER

Spiral-cut hypotube

Modular Stent Design History

	Number of Crowns	Strut Length (mm)
MS II	4	3.0
GFX	6	2.0
GFX2	6	2.0
S670	7	1.5
S7	10	1.0
Driver	10	1.0

STENTS > DRIVER

Driver Stent Specifications vs S7

	Driver	S 7
Material	Cobalt alloy	316L Stainless steel
Element Length	1.0 mm	1.0 mm
Number of Crowns	10	10
Number of Struts	20	20
Strut Dimensions	0.0036" x 0.0037"	0.0045" x 0.0050"
Recoil	< 2%	~2%
Foreshortening	< 2% (3.0-4.0 mm)	
	< 6% (4.5 mm)	< 2%
Vessel Wall Coverage	13-19%	18-24%

Driver Cobalt Alloy: Proven Implant Material

Cobalt alloys have been used in medical implants for more than 30 years

- The cobalt alloy used in Driver has also been used in:
 - Medtronic pacemaker leads
 - Aneurysm clips
 - Septal occluder

Benefits of Driver Cobalt Alloy Over 316L Stainless Steel

 For thinner struts, lower profile, and improved flexibility without compromising radial strength

Higher density

- For thinner struts without compromising radiopacity
- **☼** More fatigue-resistant
- **★ More corrosion-resistant**
- **❖ Non-ferromagnetic**
 - MRI compatible

Driver Coronary Stent System

STENTS

DRIVER

Restenosis and Stent Design

Some clinical evidence suggests that thinner struts may result in lower restenosis rates

- Hypothesized mechanisms include:
 - Less damage
 - Less metal implanted
 - More favorable flow conditions
 - Faster endothelialization

Stent Strut Thickness Influences Restenosis Multi-Link™ Stent: ISAR-STEREO 1; 651 Pts, 6-Mth F/U

Stent Design and Strut Thickness Affect Long-Term Outcome of Stenting: ISAR-STEREO II

In-Stent Restenosis in Small Coronary Arteries Impact of Stent Thickness

821 / 1,447 Pts with 8 \pm 2 month Angio f/u, vessels < 3 mm Thin strut < 0.10 mm; Thick strut ≥ 0.10 mm

Thin Strut

Thick Strut

P-value

N = 505 Lesions N = 436 Lesions

Angiographic RS	28.5%	36.6%	0.009
Late Loss	1.04 ± 0.79	1.16 ± 0.76	0.03
Loss Index	0.54 ± 0.43	0.66 ± 0.47	0.001

Multivariate Predictors of RS:

Stent Length Strut Thickness Diabetes

In-Stent Restenosis in Small Coronary Arteries Impact of Stent Thickness

		Vessel Diameter						
		≤ 2.5 2. 5		2.51-2.75	2.51-2.75			
			N = 300		N = 291		N = 350	
	Restenosis							
	Thin		31.8%		32.0%		23.5%	
	Thick		34.9%		37.9%		37.0%*	
	Loss Index							
	Thin	(0.56 ± 0.40		0.57 ± 0.47		0.48 ± 0.37	
	Thick	0	0.62 ± 0.39		0.64 ± 0.38		0.78 ± 0.37 [†]	
			*p = 0.006		[†] p < 0.05			

Evolution of Modular Stent Strut Thickness

Year	Stent	Strut Thickness (in)
1997	Micro Stent II	0.008 Peg
1998	GFX	0.0053 ease in
1999	S670	0.0048 Stent
2001	S7	0.0045
2002	Driver*	0.0036

Images represent cross-sectional view of stent strut

Medtronic AVE Driver/S8 Stent

Medtronic AVE Driver/S8 Stent

