Below The Knee

Long-term Outcomes Following Infrapopliteal Angioplasty for Critical Limb Ischemia

413 patients with CLI in 459 limbs; lesions classified according to TransAtlantic Inter-Society Consensus (TASC) by severity.

 Technical success was achieved in 93% (n = 427 limbs) with all failures in TASC D lesions

Infrapopliteal PTA is effective primary therapy for TASC A, B, and C lesions. Surgical bypass should be offered to patients with TASC D disease who are suitable candidates

CardioVascular Research Foundation TCTAP 2014

Lo RC, et al. *J Vasc Surg*. 2013;Epub ahead of print.

Medical Center

Endovascular Treatment for Infrainguinal Vessels in Patients with CLI: OLIVE Registry

Prospective, multicenter Japanese study of 312 patients.

- Major adverse cardiovascular event and major adverse event rates were 17% and 27% at 1 year, respectively
- Reintervention was required in 34% of patients by 1 year to achieve freedom from ischemic symptoms

Iida O, et al. *Circ Cardiovasc Interv.* 2013;Epub ahead of print.

CardioVascular Research Foundation TCTAP 2014

Wagner (wound) classification

Grade 0 - no ulcer in a high-risk foot

- Grade 1 Superficial ulcer involving the full skin thickness but not underlying tissue
- Grade 2 Deep ulcer, penetrating down to ligaments and muscle, but no bone involvement or abscess formation
- Grade 3 Deep ulcer with cellulitis or abscess formation, often with osteomyelitis
- Grade 4 Localized gangrene Grade 5 - Extensive gangrene involving the whole foot

TYPE AND DISTRIBUTION OF 2,893 LESIONS in 417 Consecutive Diabetic with Ischaemic Foot Ulcer:

Time to complete healing 3 ~ 4 months

Group	Bypass	Endovascular	P value
Wound size	142	148	
A $(0 - 5mm)$	84 days	105 days	P = NS
B (5mm – 20mm)	102 days	128 days	P = NS
C (>20mm)	115 days	164 days	P = 0.01
oundation		77.8	CHECK COLLECT MEDICING

CardioVascular Research

Angiosome Concept

Angiosome – 3D anatomic unit fed by a source artery (skin, subcutaneous tissue, fascia, muscle and bone)

CardioVascular Research Foundation TCTAP 2014

Taylor, et al. Br J Plastic Surger

Angiosome concept

Six distinct angiosomes:

- Posterior tibial artery
 (3)
 - Calcaneal
 - Medical plantar
 - Lateral plantar

Anterior tibial artery (1)

- Dorsalis pedis

Peroneal artery (2)

- Lateral calcaneal
- Anterior perforator

Angiosome-targeted Intervention

P = 0.03

CardioVascular Research Foundation TCTAP 2014

Neville RF, et al. Ann Vasc Surg 2009; 23(3):367-373

Angiosome-based Recanalization

- Tibial <u>angioplasty</u>:
 - Appropriate angiosome treated
 - Boundary artery treated

83% healed

59% healed

Alexandrescu et al. JEVT 2008

- Tibial <u>bypass</u>:
 - Appropriate angiosome bypassed
 - Boundary artery bypassed

91% healed

62% healed

Neville et al. Ann Vasc Surg 2009

PTA following the Angiosome-Concept

- 369 limbs with ischemic ulcerations
- Rutherford 5 73 %
- Rutherford 6 27 %

If treatment of the angiosome-based target lesion was unsuccessful, a non-angiosome-based lesion was treated

- DIRECT revascularization 54 %
- INDIRECT revascularization 46 %

lida et al. JVS 2012

PTA following the Angiosome-Concept

- 369 limbs with ischemic ulcerations
- Rutherford 5 73 %
- Rutherford 6 27 %
- DIRECT revascularization 54 %
- INDIRECT revascularization 46 %

An unsuccessful intervention indicates more complex and extensive disease, which is usually linked to a less favourable clinical outcome.

lida et al. JVS 2012

PTA following the Angiosome-Concept or as many Arteries as Possible ?

- Retrospective analysis of 1268 CLI-patients and PTA BTK

- Most important factor influencing limb salvage was the number of patent arteries post PTA.

Authors-conclusion: every effort should be made to open up as many arteries as possible BTK. Angisome-concept was not mentioned in this paper.

Peregrin et al., *Cardiovasc Intervent* Radiol 2010;33:720-725

Classification of disease TransatlAntic interSociety Consensus document

Preferred Treatment

• Group A consists of single stenoses shorter than 1 cm. **PTA**

• **Group B** consists of multiple focal (<1 cm) stenoses of the tibial or peroneal arteries (including up to two focal stenoses at the tibial trifurcation) and short tibial or peroneal stenoses in conjunction with femoropopliteal disease.

PTA

• Group C consists of longer stenoses 1–4 cm and Current However, due to the improvements in equipment and technique, endovascular therapy is now considered a feasible option in groups C–D. In addition the presence of co-morbid conditions and operator skills should be considered when making the final decision.

diffusely diseased tibial vessels

Classification of disease TransatlAntic interSociety Consensus document

However, due to the improvements in equipment and technique, endovascular therapy is now considered a feasible option in groups C–D. In addition the presence of co-morbid conditions and operator skills should be considered when making the final decision.

Recommendations	Class ^a	Level ^b
When revascularization in the infrapopliteal segment is indicated, the endovascular-first strategy should be considered.	lla	C
For infrapopliteal lesions, angioplasty is the preferred technique, and stent implantation should be considered only in the case of insufficient PTA.	lla	C

Indication PTA for intrapopliteal lesions

- Critical limb ischemia
- Moderate to severe claudication (debate)
- Prevention of proximal PTA or bypass failure

Critical limb ischemia

Clinical description	Fontaine class	Rutherford category	ABI	Symptom
Asymptomatic	Ι	0	0.85-1	none
Mild claudication	IIa	1	0.5-0.8	Walking distance>200m
Moderate claudication	IIb	2	0.5-0.8	Walking distance=100- 200m
Severe claudication	IIb	3	0.5-0.8	Walking distance<100m
Ischemic rest pain	III	4	< 0.5	Resting pain
Minor tissue loss	IV	5	<0.5	Minor tissue loss (ulceration)
Major tissue loss	IV	6	< 0.5	Major tissue loss (gangrene)

RESULTS of PTA

Technical success

- The technical success rates of infrapopliteal angioplasty range between 78% and 100%.
- Occlusion length >10 cm is an adverse factor both for technical success and patency.

Discrepancy between primary patency and clinical success

- Primary patency rates for PTA vary widely
 - 13% to 81% at 1 year
 - 48% to 78% at 2 years.
- The limb salvage rate for PTA
 - 77% to 89% at 1 year
 - 94% at 3 years (one report).
- The limb salvage rate for surgery
 - 81% to 88% at 1 year
 - 88 at 2 years.
 - 80 at 3 years.

Discrepancy between primary patency and clinical success

- This feature is more prominent in patients with tissue loss, especially with ulcers, than in those with rest pain.
- Ulcer healing reduces the oxygen demand and as a consequence less blood flow is generally required to maintain tissue integrity compared with the amount required for initial ulcer healing.

 Collaterals may therefore be sufficient to preserve tissue integrity if there is no further injury.

Factors Influencing the Patency of Infrapopliteal Artery after PTA

- Diabetes: lower rate of limb salvage & ulcer healing.
- Renal insufficiency
- Elevated lipoprotein (a)
- Presence of ulcer or gangrene
- Lack of angiographic improvement
- Extensive atherosclerotic disease

Complications of PTA

- Complication rate : 2-6%
- Puncture site hematoma
- Acute arterial occlusions by spasm or dissection: (stent or liberal use of antispasmodics)
- Embolic occlusion: thrombolysis or thrombectomy
- Arterial perforations (3.7%): rarely require intervention
- 30-day mortality : 1.7% vs. bypass surgery :1.8-6%

BASIL trial

(Multicenter randomized trial for infrainguinal severe ischemia)

Surgery vs. Balloon angioplsty

Amputation-free survival

Mortality-free survival

Lancet. 2005;366:1925-34

Medical Center

New approach

- Laser angioplasty
- Cutting balloon.
- Coated stent
- Drug-eluting stents
- Absorbable metal stent

SiroBTK study with SES 30 patients, 62 arteries, 106 SES Primary endpoint: clinical improvement and healing of ulcer @ 1 & 7.7 months

- Angiographic and procedural success : 100%.
- 7 months outcomes
- Amputatiton 1 toe in one patient and 1 mid-foot in another.
- Limb salvage : 100% of patients.
- Death : two cardiac deaths unrelated to CLI
- Three recurrent homolateral claudication.
- Mid-term clinical improvement : 100%
- Primary patency: 97% (56 patent arteries on 58 arteries).

J Endovasc Ther. 2007;14:241-50.

SES vs. BMS

SES (75 limb, 153 lesions) BMS (47 limb, 77 lesions)

BTK SES registry Prospective nonrandomized single center registry SES for Sxmatic focal infrepopliteal obstruction (n=74 pts)

CardioVascular Research Foundation TCTAP 2014

Patency at 24 months Primary: 89.2% Secondary: 95.9%

Endovascular today 2007;August.71-74

PaRADISE trial

(PReventing Amputation using Drug-elutlng StEnt) Critical limb ischemia (106 pts, 108 limbs, SES 83%, PES 17%)

- Stent number/limb: 1.9±0.9, Stent length : 60±13 mm
- Target limb revascularization: 15%

CardioVascular Research Foundation

<u>TCTAP 2014</u>

Angiographic restenosis: 12% (follow-up rate 35%)

Feiring AJ et al. J Am Coll Cardiol. 2010;55:1580-9

YUKON-BTK Trial Primary & Secondary Patency

Event-free Survival at 12 months

Survival free from target lesion revascularisation, major and minor amputation, myocardial infarction and death was compared by Kaplan-Meier analysis with the use of the Mantel-Cox log-rank test.

CardioVascular Research Foundation TCTAP 2014

Rastan et al. EHJ 2011 in revision

MAE and Limb salvage at 2-year FU in patients with CLI DES vs. BMS (YUKON Trial, Rastan A. et al. JACC 2012)

	Sirolimus Stent	Bare Metal Stent	Р
CLI cohort	(N=38)	(N=31)	
Death	10 (26.3%)	10 (30.3%)	0.60
Major-/Minor Amputation	1/1 (5.3%)	4/3 (22.6%)	0.04
TVR	4 (10.5%)	4 (12.9%)	0.70
Myocardial infraction	0 (0%)	2 (6.4%)	0.20
Limb salvage	37 (97.4%)	27 (87.1%)	0.10

DESTINY - 12-month primary patency *MultiLink Vision vs Xience V*

Bosiers M. LINC 2011

CardioVascular Research Foundation TCTAP 2014

12-month limb salvage MultiLink Vision vs Xience V

Medical Center

COLLEGE MEDICINE

CardioVascular Research Foundation TCTAP 2014

The ACHILLES Study

Primary Endpoint 12M In-Segment Binary Restenosis by QA

CYPHER SELECT PLUS (n = 67) PTA (n = 74) CYPHER SELECT PLUS (n = 75) PTA (n = 66)

YUKON, DESTINY & ACHILLES Trials Primary Patency

Rastan et al. EHJ 2011 Scheinert et al. JACC 2012 Bosiers et al. JVS 2012

Absorbable Magnesium Stent

Recoil	~ 5%
Foreshortening	< 5%

* Investigational device only - not for sale -

FEA: Fully expanded state

FEA: Crimped state

Clinical Results BEST-BTK

First in Man experience with the <u>Biotronik absorbabl</u> metal <u>Sten</u> <u>Below The Knee</u>

• 20 CLI patients (Rutherford 4-5) with BTK pathology

 Implants performed between December '03 – January '04

Limb Salvage After One Year Limb Salvage Rate

High Patency Rate Primary Clinical Patency

ledical Center

DEB in **BTK**

DEB BTK Registry

104 patients (angio subgroup 84 arteries) RC 3-4-5-6

IN.PACT

Primary EP: 3m (angio) Rest. Rate

Low restenosis rates at 3 months in long BTK lesions and occlusions

Key Baseline characteristics

- CLI = 82.6%; Diabetics = 73%
- Avg Lesion length = 173 ± 87 mm
- Tot Occlusions = 61.9%

Angiographic FU	DEB 3-month	PTA* 3-month
Restenosis (>50%)	27.4%	69%
Full-segment Resten.	10%	56%
Restenosis Length	64 mm	155 mm
Clinical FU	12-month	15-month
Deaths	16.3%	10.5%
Limb Salvage	95.6%	100%
Clinic. Improvem.	91.2%	76.5%
ompl. wound healing	74.2%	78.6%
TLR	17.3%	50%

* PTA historical cohort (A.Schmidt et al. CCI 2010)

DEB in BTK

DEBATE BTK RCT

Key Baseline characteristics (DEB vs. PTA):

- CLI = 100%
- Diabetics = 100%
- Mean lesion length = 121 ± 83 vs. 123 ± 68 (p=ns)
- Tot Occlusions = 80% vs. 82% (p=ns)
- **Pre-dilat.** = 100%

Significant reduction in 12-m Rest. Rate vs. PTA in BTK / CLI / Diabetics

(F.Liistro LINC 2012)

Grigore Popusoi, MD T

Twelve-Month Target Lesion Revascularization was 11%. 8 symptomatic ($RC \ge 3$) patients (10 lesions) were referred to revascularization (7 re-PTA and 1 Surgery) with Secondary Patency of 94%. Limb Salvage in patients was 96% (3 Major Amputation)

CardioVascular Research Foundation TCTAP 2014

DEBELLUM Randomized Trial

Drug Eluting Balloon Evaluation for Lower Limb mUltilevel treatMent

Single center RCT of DCB vs. PTA in MULTILEVEL lower limb disease (Fabrizio Fanelli MD - Roma, Italy)

- Prim. Endpoint: 6m LLL
- 50 patients
- Fempop / BTK:

76% / 24% 62% / 38%

• LLC / CLI:

CardioVascular Research Foundation TCTAP 2014

DCB shows reduction of restenosis vs. PTA in multilevel (SFA + BTK) disease with and without Stent

Oiter

DEFINITIVE LE (Atherectomy) Primary Patency by Vessel - CLI Cohort

	Patency (PSVR <u><</u> 2.4)	Lesion Length (cm)	
All (n= 279)	71%	7.2	
Lesion Location (proximal edge)			
SFA (n=135)	68%	8.6	
Popliteal (n=48)	66%	5.4	
Infrapopliteal (n=96)	78%	6.0	

DEF LE CLI Cohort Primary Endpoint: Freedom from Major Amputation at 1 Year

95%

Transpedal Approach

- The interventional therapy of critical limb ischemia requires crossing lesions. Often total occlusions that can't be crossed from above can easily be traversed intraluminally from below.
 - Collaterals
 - Operator can't discern where true lumen should be
 - Distal cap of occlusion may be softer than the proximal cap
 - "Hibernating vessel"

 Micro puncture .014 wire access under direct visualization (Angiographic or US)

- If pedal access is to cross only (vast majority of cases) then a .014 or .018 microcatheter is placed over the wire (to lessen risk of vessel occlusion)
- If pedal access is to cross and deliver therapy a sheath is introduced

Shuttle System

Shuttle System

Trackability and Choice : 0.018 and 0.038 inch Versability Dependable

Shuttle Tibial System

Infra-popliteal Targeting Compatible For Coaxial Use Flexor Technology

Wire

- Standard-guide wire
 - Hydrophilic tipped guidewire
 0.014 inch Choice PT & PT2 (Boston Scientific)
 0.014 inch Shinobi (Cordis)
 0.018 inch V18-Control (Boston Scientific)
 0.035 inch Terumo (Terumo)
 - Specialized coronary CTO wire Miracle guidewire (Asahi, ABBOTT) Confienza guidewire (Asahi, ABBOTT Fielder XT, Fielder FC (Asahi)

Wire

- Peripheral Wire
 - 0.018 inch 480 cm Roadrunner Extra Support Wire Guide (Cook)
 - Approach Hydro ST & Approach CTO wire (Cook)

Balloon

- Monorail coronary balloon Long, low-profile balloons
- Tracking over 0.018 inch guidewire Pacific (Invatec), Savvy (Cordis), Fox SV (Abbott), Sterling (BS), Passeo 18 (Biotronik), Symmetry (Boston Scientific)
- Tracking over 0.014 inch guidewire Amphirion Deep, OTW + RW (Invatec) Sleek RX (Cordis) - 150 cm Advanced 14 LP (Cook)

Micro-catheter

- JAMIRO microcatheter
 (2.9-French microcatheter, Kaneka)
- Corsair microcatheter (Asahi)
- FineCross microcatheter (Terumo)
- Tornus catheter (Asahi)
- CXI support catheter (Cook)

DEBATE-ISR (DEB vs Standard Angioplasty to Reduce Recurrent Restenosis in Diabetics with Femoropopliteal ISR)

44 patients with claudication or CLI treated with paclitaxel eluting balloon, 2010-2011 are compated with historical control

Conclusion: Use of DEBs to treat diabetic patients with femoropopliteal in -stent restenosis appears to reduce recurrent restenosis and repeat angioplasty at 1 year.

Liistro F, et al. J Endovasc Ther. 2014:21:1-8.

