Femoropopliteal Intervention

Access for Treatment of SFA Antegrade Access

- Distal lesions, very calcified lesions
- Better steerability and pushability
- Shorter devices and wires

Access for Treatment of SFA Cross-over technique

- Easier punture
- Less complications
- Accessability of very proximal SFA lesions
- Compression bandage on the contralateral leg

Classification of femoropopliteal lesions TASC

Type A

Single stenosis ≤ 10cm
Single occlusion ≤5cm

Endovascular

- Multiple lesions, Each \leq 5cm
- Single stenosis or occlusions ≤ 15cm, Not involving the infrageniculate popliteal artery

Type B

- Single or multiple lesions in the Absence of continuous tibial vessels to improve inflow for a distal bypass
- Heavily calcified occlusion ≤ 5 cm
- Single popliteal stenosis

Endovascular

Classification of femoropopliteal lesions TASC

- Multiple stenosis or occlusions totaling > 15cm with or without heavy calcification
- Recurrent stenosis or occlusions that need treatment after two endovascular interventions

Endovascular or surgery depending on the risk benefit

Type D

Type C

- Chronic total occlusions of CFA or SFA (> 20cm, involving the popliteal artery)
- Chronic total occlusion of popliteal artery and proximal trifurcation vessels

Surgery

Treatment strategies

Balloon angioplasty (PTA) Stainless steel stent Nitinol stent Graft stent Drug-eluting balloon (Paclitaxel) Drug-eluting stent (Everolimus, Sirolimus or Paclitaxel) Bio-degradable stent Cryoplasty / Laser angioplasty Atherectomy

Factors Influencing the Patency of SFA Interventions

Positive	Negative	Noncontributory
< 2 cm lesions	Occlusions	Age
Non-calcified	Segments stented > 10 cm	Race
> 3.5 mm diameter vessel	> 30% residual stenosis	
Non-smokers	Poor tibial run-off	
Low CRP	Creatinine > 1.3	

Guidewires for PTA

	Abbott	Asahi	Boston	Cook	Covidien
014	Command <u>Command ES</u>	Regalia XS <u>Astato XS</u>	Journey V-14 <u>Victory 014</u>	HydroST <u>Approach CTO</u>	Nitrex
018	Connect <u>Connect Flex</u> <u>Connect 250T</u>	<u>Treasure 12</u> Treasure Floppy <u>Astato 30</u>	<u>V-18</u> <u>Victory 018</u>		

**Underline; CTO wires*

Guidewire Command

Guidewire Regalia

Guidewire Astato 20

Guidewire V-14, V-18

Support Catheter CXI

Pushability with braided stainless steel shaft
Hydrophilic coated distal part
Tapered tip(0.018") delivers great support to wire
Diameter / length: 2.6Fr / 90 and 150cm
Tip Configuration: straight or angled

Support Catheter Corsair

Pushability, Trackability, Support – SHINKA - Shaft Lubricity - Hydrophilic Polymer Coating, PTFE Inner Layer Maneuverability - Tapered Soft tip and Tungsten Braiding Diameter / length: 2.6Fr / 135 and 150cm

Support Catheter FineCross

Conventional microcatheter

FineCross MG Tapers from 2.6 Fr. to 1.8 Fr. over entire catheter length Stainless steel braid structure

Hydrophilic coating, PTFE inner layer

Catheter length 130 cm / 150 cm

Diameter / length: 2.6Fr / 130 and 150cm

Subintimal Approach

Subintimal Approach

Re-entry Catheter

Re-entry catheter	Enter true lumen from subintimal space
Outback	Premounted needle on a 6 Fr catheter with fluoroscopic orientation
Pioneer	IVUS guided, premounted needle, orient needle to 12 o'clock, color flow in true lumen
Enteer	Flat balloon orients itself in subintimal space and points needle toward true lumen, 0.018 compatible
Offroad	Conical balloon 5.4 mm, when inflated points toward true lumen, microcatheter lancet

Schneider et al. J Vasc Surg 2013

Re-entry Catheter

Pioneer

8F compatible 0.014" wire (2) IVUS-guided (Volcano) Outback

6F compatible 0.014" wire (1 or 2) Fluoro-guided

Retrograde Puncture Tibial Access

Retrograde Puncture Tibial Access

Stent Fracture

Single stent fracture

Multiple single stent fracture, different site Multiple single stent fracture, complete transverse linear fracture Complete transverse linear Type III fracture with stent displacement

STOP-IC Aspirin vs. Aspirin + Cilostazol After Endovascular Therapy; Randomized Study 12 Months Results of 77 without Cilostazol vs. 75 with Cilostazol

Conclusion Cilostazol reduced angiographic restenosis after percutaneous transluminal angioplasty with provisional nitinol stenting for femoropopliteal lesions.

Iida O et al. Circulation. 2013

FAST Nitonol Stent vs. PTA SFA Lesions up to 10 cm

Lesion length 45mm ST vs. 44mm PTA

Krankenberg H et al. Circulation. 2007

Routine vs. Provisional Stenting Meta-Analysis of Randomized Trials Lesion length 45.8mm ST vs. 43.3mm Provisional + PTA

Immediate technical failure

Study name	Stent type	Time point	Statis Risk ratio	tics for e Lower limit	each stue Upper limit	dy P-value	Failure Stent	/ total Angiop	lasty	Ri	sk ratio	and 9	5% CI		Relative weight
Vroegindeweij IntraCoil Cejna Becquemin Saxon Vlabahn Schilinger Krankenberg Summary risk	Palmaz Nitinol Palmaz Palmaz Stent graft Stent graft Nitinol Nitinol ratio	1997 2001 2003 2003 2005 2006 2007	0.16 0.77 0.08 0.23 0.29 0.39 0.06 0.24 0.28	0.01 0.48 0.01 0.08 0.01 0.16 0.01 0.10 0.15	2.95 1.25 0.63 0.66 6.60 0.95 0.44 0.56 0.54	0.218 0.291 0.016 0.006 0.439 0.038 0.006 0.001 0.000	0/24 25/177 4/115 0/15 6/97 1/51 6/123	3/27 32/175 12/77 17/112 1/13 16/100 17/53 25/121		0.2	0.5	1	2	5	4.2 24.1 7.5 15.9 3.7 18.1 7.7 18.7
									Fa	avours	stents	Fa	vours a	ngiopla	asty

Conclusion Despite the higher immediate success, routine stenting was not associated with a significant reduction in the rate of restenosis or TVR.

Kasapis C et al. Eur Heart J. 2009

Routine vs. Provisional Stenting Meta-Analysis of Randomized Trials Lesion length 45.8mm ST vs. 43.3mm Provisional + PTA

Restenosis

Study name	Stent type	Time point	Statis	tics for (each stu	dy	Failure	/ total	F	Risk ratio and 95% Cl	
	2		Risk ratio	Lower limit	Upper limit	P-value	Stent	Angioplas	sty		Relative weight
Vroegindeweij	Palmaz	1997	1.45	0.64	3.29	0.378	9/24	7/27			5.1
Zdanowski	Strecker	1999	0.86	0.63	1.16	0.321	10/12	8/8			14.3
IntraCoil	Nitinol	2001	1.22	0.84	1.78	0.288	40/97	31/92			12.6
Cejna	Palmaz	2001	0.98	0.66	1.46	0.929	26/56	26/55			12.0
Grimm	Palmaz	2001	1.23	0.46	3.26	0.682	8/30	5/23			3.9
Becquemin	Palmaz	2003	1.07	0.67	1.72	0.769	26/75	21/65			10.3
Saxon	Stent graft	2003	0.17	0.05	0.65	0.009	2/15	10/13	←		2.3
Vlabahn	Stent graft	2005	0.58	0.43	0.80	0.001	34/97	60/100		- - ´	14.1
Schilinger	Nitinol	2006	0.66	0.46	0.95	0.025	21/46	36/52		+	12.8
Krankenberg	Nitinol	2007	0.82	0.56	1.20	0.304	32/101	39/101			12.5
Summary risk	ratio		0.85	0.69	1.06	0.146		0	1 0.2	0.5 1 2	5 10
									Eavour	e etopte – Equatre a	ngionlacty

Conclusion Despite the higher immediate success, routine stenting was not associated with a significant reduction in the rate of restenosis or TVR.

Kasapis C et al. Eur Heart J. 2009

Routine vs. Provisional Stenting Meta-Analysis of Randomized Trials Lesion length 45.8mm ST vs. 43.3mm Provisional + PTA

Target vessel revascularization

Study name	Stent type	Time point	Statis Risk ratio	tics for Lower limit	each stu Upper limit	dy P-value	Failure Stent	/ total Angioplas	F ty	Risk ratio	and	95% C	I	Relative weight
Zdanowski	Strecker	1999	1.13	0.18	7.09	0.894	2/15	2/17	I +				<u>+ 1</u>	1.5
IntraCoil	Nitinol	2001	0.93	0.56	1.54	0.771	24/146	25/141			<u> </u>			17.2
Cejna	Palmaz	2001	1.75	1.03	2.96	0.037	28/77	16/77						16.2
Grimm	Palmaz	2001	0.88	0.37	2.06	0.762	8/30	7/23		_	•			6.6
Becquemin	Palmaz	2003	1.51	0.68	3.36	0.306	14/115	9/112		- 1		-		7.6
Saxon	Stent graft	2003	0.87	0.14	5.32	0.877	2/15	2/13	→				- I	1.5
Vlabahn	Stent graft	2005	0.93	0.54	1.62	0.805	19/97	21/100		—	•—			14.8
Schilinger	Nitinol	2006	0.69	0.44	1.08	0.104	17/46	28/52			-			21.0
Krankenberg	Nitinol	2007	0.82	0.46	1.47	0.497	17/114	21/115						13.5
Summary risk	(ratio		0.98	0.78	1.23	0.889					\$			
								0	.1 0.2	0.5	1	2	5 10)
									Favour	s stents	F	avours	angionla	istv

Conclusion Despite the higher immediate success, routine stenting was not associated with a significant reduction in the rate of restenosis or TVR.

Kasapis C et al. Eur Heart J. 2009

Nitinol Stent vs. PTA Randomized Intermittent Claudication and Chronic CLI of SFA

Lesion length 132mm ST vs. 127mm PTA

Schillinger M et al. NEJM. 2006

Nitinol Stent vs. PTA Randomized Intermittent Claudication and Chronic CLI of SFA

Lesion length 132mm ST vs. 127mm PTA

Schillinger M et al. NEJM. 2006

Primary ST vs. PTA with Optional ST Sustained Benefit at 2 Years

Lesion length 112mm ST vs. 93mm PTA

Schillinger M et al. Circulation. 2007

Primary ST vs. PTA with Optional ST Sustained Benefit at 2 Years Lesion length 112mm ST vs. 93mm PTA

Schillinger M et al. Circulation. 2007

Viabahn Graft Stent Stented length: 25.6±15 cm

Jet K et al. J Vasc Surg. 2007

Viabahn 1-year Primary Patency Based on Lesion Length 988 Limbs in 15 Independent Studies

Patient demographics, lesion characterization, and patency definitions may differ among studies. Studies include at least 30 limbs.

Endoprosthesis Description

Ultra-thin wall ePTFE tube

Unique, durable bonding film

Polished nitinol support

Zilver[®] PTX[®] Drug Eluting Stent

Designed for the SFA CE Marked Investigational in the US and Japan Dual therapy stent Mechanical support: Zilver[®] FlexTM Stent Plaftorm coating: Paclitaxel only No polymer or binder $3 \mu g/mm^2$ dose density Sponsor: Cook Medical

Zilver PTX for de novo Lesion Matching comparison with other stent trials

Dake MD et al. J Endovasc Ther. 2011

Zilver PTX vs. PTA/Provisional BMS Randomized and Single-Arm Clinical Studies 2 Year Follow-Up of 236 Primary DES vs. 238 Primary PTA and 59 Provisional BMS vs. Provisional DES

Dake MD et al. J Am Coll Cardiol. 2013

Biodegradable Igaki-Tamai Stent First-generation PLLA fully Bioresorbable Stent SFA de novo Lesions of 30 Patients

Conclusion The first fully bioresorbable stent shows angiographic results similar to those of metal stents in occlusive lesions of the SFA.

Werner M et al. JACC Cardiovasc Interv. 2014

SMART Nitinol Self-expanding Stent Obstructive SFA Disease

3 year outcomes for **250** stented patients

Conclusion Patients treated with a Nitinol stent show sustained clinical and quality of life improvements at 3 years, with a low, 3.6% rate of stent fracture.

Jaff MR. International Symposium on Endovascular Therapy 2014

Paclitaxel-Coated vs. Uncoated Balloon Meta-Analysis of Randomized Trials

Target lesion revascularization PCB UCB Odds Ratio Odds Ratio Study or Subgroup Events Total Events Total Weight M-H, Random, 95% CI Year M-H, Random, 95% CI 0.16 [0.06, 0.42] THUNDER 7 48 28 54 32.1% 2008 0.15 [0.05, 0.44] FemPac 6 45 21 42 27.3% 2008 0.51 [0.17, 1.55] LEVANT I 6 47 10 45 24.7% 2010 0.27 [0.07, 1.09] PACIFIER 40 9 39 16.0% 2011 0.23 [0.13, 0.40] Total (95% CI) 100.0% 180 180 Total events 22 68 Heterogeneity: Tau² = 0.02; Chi² = 3.19, df = 3 (P = 0.36); I² = 6% 0.1 10 0.01 100 Test for overall effect: Z = 5.09 (P < 0.00001)PCB Better UCB Better Heterogeneity(exact): $Chi^2 = 3.26$, df = 3 (P = 0.35) Test for overall effect (exact); P < 0.00001

Conclusion In femoropopliteal arterial disease, PCB therapy is associated with superior antirestenotic efficacy as compared with UCB angioplasty with no evidence of a differential safety profile

Salvatore C et al. Circ Cardiovasc Interv. 2012

Paclitaxel-Coated vs. Uncoated Balloon Meta-Analysis of Randomized Trials

Binary rester	nosis									
Study or Subgroup	PCB Events	Total	UCB Events	Total	Weight	Odds Ratio M-H, Random, 95% Cl		Odds Ratio M-H, Rando	m, 95% Cl	
THUNDER	7	41	21	48	38.8%	0.26 [0.10, 0.71]				
FemPac	10	31	22	34	36.1%	0.26 [0.09, 0.73]				
PACIFIER	4	40	12	39	25.1%	0.25 [0.07, 0.86]				
Total (95% CI)		112		121	100.0%	0.26 [0.14, 0.48]		-		
Total events	21		55							
Heterogeneity: Tau ² =	0.00; Chi ²	= 0.01	. df = 2 (F	P = 1.00)); l ² = 0%				<u> </u>	
Test for overall effect:	Z = 4.27 (P < 0.0	001)				0.01	0.1 1	10	100
Heterogeneity(exact): C	hi ² = 0.00	4, df = 3	2 (P = 0.9	99)				PCB Better	UCB Better	
Test for overall effect (exact): P <	0.0000)1							

Conclusion In femoropopliteal arterial disease, PCB therapy is associated with superior antirestenotic efficacy as compared with UCB angioplasty with no evidence of a differential safety profile

Salvatore C et al. Circ Cardiovasc Interv. 2012

Paclitaxel-Coated vs. Uncoated Balloon Meta-Analysis of Randomized Trials

Late lumen lo	oss								
Study or Subgroup	PCB Mean	SD	Total	UCB Mean	SD	Total	Weight	Mean Difference IV, Random, 95% Cl	Mean Difference IV, Random, 95% Cl
THUNDER	0.4	1.2	41	1.7	1.8	48	19.6%	-1.30 [-1.93, -0.67]	
FemPac	0.5	1.1	31	1	1.1	34	25.2%	-0.50 [-1.04, 0.04]	
LEVANT I	0.4	1.1	39	1.09	1	35	29.7%	-0.69 [-1.17, -0.21]	
PACIFIER	-0.05	1.1	40	0.61	1.3	39	25.5%	-0.66 [-1.19, -0.13]	
Total (95% CI)			151			156	100.0%	0.75 [-1.06, -0.45]	•
Total events									
Heterogeneity: Tau ² =	0.02; Ch	i ² = 3	.95, df	= 3 (P =	: 0.27	'); ² = 2	4%		-2 -1 0 1 2
Test for overall effect:	Z = 4.78	(P <	0.0000)1)					PCB Better UCB Better

Conclusion In femoropopliteal arterial disease, PCB therapy is associated with superior antirestenotic efficacy as compared with UCB angioplasty with no evidence of a differential safety profile

Salvatore C et al. Circ Cardiovasc Interv. 2012

DEBATE-SFA Randomized Trial PEB+BMS vs. PTA+BMS with intermittent claudication or CLI

12-Month Results from 55 Lesion vs. 55 Lesion

PTA

Liistro F et al. J Am Coll Cardiol Intv. 2013

46

49

DEBATE-SFA Randomized Trial PEB+BMS vs. PTA+BMS with intermittent claudication or CLI 12-Month Results from 55 Lesion vs. 55 Lesion

Liistro F et al. J Am Coll Cardiol Intv. 2013

IN.PACT SFA Randomized Trial

DCB vs. Standard PTA of symptomatic femoropopliteal disease 12-Month Results from 207 DCB vs 109 PTA

IN.PACT SFA Randomized Trial

DCB vs. Standard PTA of symptomatic femoropopliteal disease 12-Month Results from 207 DCB vs 109 PTA

Outcome	DCB (n=220)	PTA (n=111)	P Value
Primary efficacy – primary patency, % (m/n)	82.2 (157/191)	52.4 (54/103)	<0.001
12-month efficacy outcomes			
All TLR, % (m/n)	2.9 (6/207)	20.6 (22/107)	< 0.001
Clinically driven TLR, % (m/n)	2.4 (5/207)	20.6 (22/107)	<0.001
Clinically driven TVR, % (m/n)	4.3 (9/207)	23.4 (25/107)	<0.001
Primary sustained clinical improvement, % (m/n)	85.2 (167/196)	68.9 (73/106)	<0.001
ABI/TBI	0.951±0.221#	0.886±0.169	0.002

Tepe G et al. Circulation. 2015

IN.PACT SFA Randomized Trial

DCB vs. Standard PTA of symptomatic femoropopliteal disease 12-Month Results from 207 DCB vs 109 PTA

Outcome	DCB (n=220)	PTA (n=111)	<i>P</i> Value
12-month safety outcomes			
30-day device- and procedure-related death, % (m/n)	0.0 (0/218)	0.0 (0/111)	>0.999
Target limb major amputation, % (m/n)	0.0 (0/207)	0.0 (0/107)	>0.999
All-cause death, % (m/n)	1.9 (4/207)	0.0 (0/107)	0.93
Thrombosis, % (m/n)	1.4 (3/207)	3.7 (4/107)	0.10
12-month functional outcomes			
Change from baseline by EQ-5D Index	0.1059±0.2089#	0.0730±0.1951	0.095
Walking impairment, %	72.7±31.4#	73.6±29.5	0.590
Change in 6MWT from baseline to 12 mo, m	38.7±92.1#	59.1±102.3	0.878

Tepe G et al. Circulation. 2015

SMART[®] Flex Nitinol Self Expanding Stent

- Fully connected, highly flexible
- Helical strut bands provide radial force
 - Flex bridges provide complete scaffolding with flexibility
 - Diameter / Length : 5-8mm / 30 200mm

SilverHawk Directional Atherectomy

MICRO EFFICIENT COMPRESSION (MECTH) TECHNOLOGY Tiny, laser-drilled nosecone holes

Increase tissue collection capacity, potentially reducing procedure time and number of insertions (L5-M, LX-M, MS-M, SXL, and EXL models)

SILVERHAWK TECHNOLOGY

Engages and treats mild- to moderately-calcified lesions and offers the convenience of on-the-wire cleaning

DEFINITIVE LE

Provides insight into the clinical utility of directional atherectomy with the TurboHawk and SilverHawk device in a broad range of patients. (diabetic, non-diabetic, claudicants, and those with CLI)

DEFINITIVE LE Revascularization Using Directional Atherectomy 12 Month Prospective Results

Patency outcomes: Claudicant cohort

Conclusion The DEFINITIVE LE study demonstrated that DA is a safe and effective treatment modality at 12 months for a diverse patient population with either claudication or CLI.

McKinsey et al. J Am Coll Cardiol Intv. 2014

DEFINITIVE LE Revascularization Using Directional Atherectomy 12 Month Prospective Results

Endpoint outcomes: CLI cohort

Conclusion The DEFINITIVE LE study demonstrated that DA is a safe and effective treatment modality at 12 months for a diverse patient population with either claudication or CLI.

McKinsey et al. J Am Coll Cardiol Intv. 2014

DEFINITIVE LE Revascularization Using Directional Atherectomy 12 Month Prospective Results

Patency outcomes: Diabetic vs. Nondiabetic claudicants

\sim	Months	0	3	6	9	12
Dichatia	At risk	345	331	309	261	150
Diabetic	Patency (95% CI)	100 (100.0 100.0)	99 (96.5 99.4)	95 (92.2 97.0)	85 (80.6 88.5)	77 (71.7 81.4)
Non-	At risk	398	376	346	309	167
Diabetic	Patency (95% CI)	100 (100.0 100.0)	99 (98.1 100.0)	95 (92.1 96.7)	88 (83.6 90.5)	78 (72.9 82.1)

Conclusion DA was shown to be noninferior for treating PAD in patients with diabetes compared with those without diabetes.

McKinsey et al. J Am Coll Cardiol Intv. 2014

SFA Patency Comparison

Study	Device	Mean Length, cm	Patency, %	Patency Definition
DEFINITIVE LE	DA	8.1	75	$PSVR \le 2.4$
RESILIENT	BMS	6.2	81.3	PSVR <2.5
DURABILITY II	BMS	8.9	77.2	PSVR <2.0
STRIDES	DES	9.0	68	PSVR <2.5
Zilver RCT	DES	5.4	83.1	PSVR <2.0
Italian Registry	DCB	7.6	83.7	PSVR <2.5
LEVANT I	DCB	8.1	67	PSVR <2.5

Directional Atherectomy Calcified Stenotic Lesion of SFA, TASC B and C 3-Year Results of 59 Lesion, Mean Lesion Length 7.9cm

Minko P et al. Cardiovasc Intervent Radiolol. 2014

ISR Classification

Classification and Clinical Impact Freedom From Recurrent ISR

Classification and Clinical Impact Freedom From Recurrent Occlusion

Predictors of Recurrent ISR After POBA for ISR

	Univariate Analysis		Multivariate Analysis	
Variables	HR (95% CI)	P value	HR (95% CI)	P value
ISR class III	2.90 (1.83-4.56)	<0.01	2.44 (1.33-4.48)	<0.01
Lesion Length (mm)	1.004 (1.002-1.007)	< 0.01	1.001 (0.998-1.005)	0.50
Reference vessel diameter (mm)	0.62 (0.44-0.87)	<0.01	0.63 (0.44-0.89)	<0.01
Early restenosis	1.92 (1.13-3.23)	0.02	1.60 (0.94-2.73)	0.09

DEB for treatment of SFA ISR Final post-dilation with paclitaxel-eluting balloons

12-Month Results of 39 Consecutive Patients

Dotted lines = 95% confidence interval

Stabile E. et al. J Am Coll Cardiol 2012

DEB for treatment of SFA ISR Final post-dilation with paclitaxel-eluting balloons

2-Year Follow Up of 39 Consecutive Patients

Dotted lines = 95% confidence interval

Virga V et al. JACC Cardiovasc Interv. 2014

DEBATE-ISR

DEB vs. Standard Angioplasty to Reduce Recurrent Restenosis in Diabetics with Femoropopliteal ISR

44 patients with claudication or CLI treated with paclitaxel eluting balloon

Conclusion Use of DEBs to treat diabetic patients with femoropopliteal ISR appears to reduce recurrent restenosis and repeat angioplasty at 1 year.

Liistro F et al. J Endovasc Ther. 2014

Treatment of ISR in SFA

РТА	Up to 73% restenosis rates at 6-month 49.9% to 84.8% at 12-month	J.Laird et al. JACC 2012 P.Dick et al. Radiology 2008	
Cutting Balloon	65% restenosis rates at 6-month	A. Tosaka et al. JACC 2012	
Atherectomy	46% restenosis rates at 12-month	T.Zeller et al. JACC 2006	
Graft stents	62%~85.1% primary patency at 12- month	TS. Monahan et al. Journal of Vasc Surg 2011 P.Soukas Oral presentation LINC 2011	
ELCA/PTA+HFH-Graft stents	48% primary patency at 12-month	J.Laird et al. Cath and Cardiovasc Interv 2012	
PTA + Brachytherapy	79.8% primary patency at 12-month	M.Werner et al. JEVT 2012	
DES	81% freedom from TLR at 12-month 61% freedom from TLR at 24-month	Thomas Zeller JACC Cardiovasc Interv 2013	
DEB	92% freedom from TLR at 12-month	Stabile JACC 2013	

New Trial of Treatment in SFA

LEVANT 2 trial

Paclitaxel-Coated Balloon for Femoropopliteal Artery Disease 12 Month Randomized Results

Patency outcomes: Drug-coated balloon vs. Conventional angioplasty

Conclusion DCB was higher than the rate with angioplasty with a standard balloon in a rate of primary patency at 12 months.

ICTAP 2016

Kenneth R et al. N Engl J Med. 2015

SUPERB trial

Wire-Interwoven Nitinol Stent for Femoropopliteal Artery 12 Month Randomized Results

Composite outcome of death, TLR, limb salvage

TCTAP2016

Interval	[0, 90)	[90, 180)	[180, 270]	[270, 360]	[360, 390]
# At Risk	264	242	234	215	188
# Censored	21	4		14	
# Events		4	14		16
% Survived	1,000	0.996	0.979	0.920	0.863
Standard Error	0.000	0.004	0.009	0.018	0.023

Conclusion Primary endpoint was achieved in 99.2% of patients (P<0.001). Primary patency at 12 months was achieved in 78.9% of population (P<0.001).

Lawrence G et al. Circ Cardiovasc Interv. 2015

MAJESTIC trial

Paclitaxel-Eluting Self-Expanding Stent for Femoropopliteal Artery 9 Months Primary patency

Conclusion Primary patency was achieved in 94.4% of patients. TLR rate at 9 months was achieved in 3.6% of population.

TCTAP 2016

ClinicalTrials.gov, NCT01820637

DEFINITIVE AR trial

Revascularization Using Directional Atherectomy combine with Drug Coated Balloon angioplasty

12 Month Prospective Results

Conclusion The DEFINITIVE AR study demonstrated that DA is a safe and effective treatment modality at 12 months for a diverse patient population with either claudication or CLI.

ClinicalTrials.gov, NCT01366482

