# Infrapopliteal intervention







## Anatomic Challenges infrapopliteal disease

- Atherosclerotic disease confined to the infrapopliteal arteries may be asymptomatic due to the excellent collateral network between tibial arteries
- One patent tibial artery is often sufficient to keep a patient free from ischaemic symptoms
- When these patients present with CLI they often have severe, extensive three-vessel disease and only 20–30% have a simple, focal lesion with good distal run-off





## Anatomic Challenges infrapopliteal disease

 Patients are usually elderly with several comorbidities, such as diabetes and coronary artery disease, which increases the surgical risk

 Femorodistal and pedal bypass surgery is technically demanding and associated with a 1.8–6% perioperative mortality





#### Classification of disease Transatl Antic interSociety Consensus document

**Preferred Treatment** 

• Group A consists of single stenoses shorter than 1 cm. PTA

• Group B consists of multiple focal (<1 cm) stenoses of However, due to the improvements in equipment and technique, endovascular therapy is now considered a feasible option in groups C–D. In addition the presence of co-morbid conditions and operator skills should be considered when making the final decision. tibial trifurcation.

• Group D consists of occlusions longer than 2 cm and diffusely diseased tibial vessels

Surgery



### Why? PTA for intrapopliteal lesions

- The highest likelihood of coronary heart disease in patients with infrapopliteal disease.
- PTA is a low-risk and minimally invasive procedure, which rarely compromises a later surgical procedure, and at the same time preserves the saphenous vein for future coronary or lower extremity distal bypass surgery.
- The total intervention time of infrapopliteal PTA (less than 2 h), is shorter than time of surgery (4h)
- Avoids general anaesthesia and shorteer the hospital stay, compared with surgical treatment.
- Repeat PTA, unlike repeat surgical bypass operations, can be easily performed in case of restenosis.





#### How do you treat ? intrapopliteal lesions

- In those with significant medical comorbidities
- Absence of suitable veins to act as conduits for bypass,
- Inadequate sites for distal anastamosis
   No angiographically visible tibial vessels,
   Vessels ≤ 1 mm in diameter,
   Diffusely diseased vessels



#### Indication PTA for intrapopliteal lesions

#### Critical limb ischemia

- Moderate to severe claudication (debate)
- Prevention of proximal PTA or bypass failure





## **Critical limb ischemia**

| Fontaine<br>class | Rutherford category                                                   | ABI                                                          | Symptom                                                                                                                                                                                                                                                  |
|-------------------|-----------------------------------------------------------------------|--------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Ι                 | 0                                                                     | 0.85-1                                                       | none                                                                                                                                                                                                                                                     |
| IIa               | 1                                                                     | 0.5-0.8                                                      | Walking distance>200m                                                                                                                                                                                                                                    |
| IIb               | 2                                                                     | 0.5-0.8                                                      | Walking distance=100-<br>200m                                                                                                                                                                                                                            |
| IIb               | 3                                                                     | 0.5-0.8                                                      | Walking distance<100m                                                                                                                                                                                                                                    |
| III               | 4                                                                     | <0.5                                                         | Resting pain                                                                                                                                                                                                                                             |
| IV                | 5                                                                     | <0.5                                                         | Minor tissue loss (ulceration)                                                                                                                                                                                                                           |
| IV                | 6                                                                     | <0.5                                                         | Major tissue loss (gangrene)                                                                                                                                                                                                                             |
|                   | Fontaine<br>class<br>I<br>IIa<br>IIb<br>IIb<br>IIb<br>III<br>IV<br>IV | Fontaine<br>classRutherford<br>categoryI0IIa1Ib2Ib3II4IV5IV6 | Fontaine class       Rutherford category       ABI         I       0       0.85-1         IIa       1       0.5-0.8         IIb       2       0.5-0.8         IIb       3       0.5-0.8         IIb       3       0.5-0.8         IIV       5       <0.5 |





## **Critical limb ischemia**

- High cardiovascular mortality rate (46% at 5 years)
- 25% amputation rate despite attempts at revascularization.
- Patients with CLI undergoing successful revascularization survive longer and have an increased quality of life compared with patients who have an amputation
- Therefore, restoration of adequate blood supply to the foot should be attempted whenever possible in all these patients.
- Even if amputation cannot be avoided, infrapopliteal PTA may allow a lesser amputation in patients who would otherwise have needed a major amputation







## Moderate to severe claudication

R

| Clinical description | Fontain<br>class |
|----------------------|------------------|
| Asyı                 | 1.               |
| Milc                 | a                |
| Mod                  | b                |
| Seve                 | b                |
| Isch                 | J I              |
| Min                  | /                |
| Maje                 | /                |
|                      |                  |
|                      |                  |
|                      |                  |

| utherford<br>category | ABI     | Symptom                        |
|-----------------------|---------|--------------------------------|
| 0                     | 0.85-1  | none                           |
| 1                     | 0.5-0.8 | Walking distance>200m          |
| 2                     | 0.5-0.8 | Walking distance=100-<br>200m  |
| 3                     | 0.5-0.8 | Walking distance<100m          |
| 4                     | <0.5    | Resting pain                   |
| 5                     | <0.5    | Minor tissue loss (ulceration) |
| 6                     | < 0.5   | Major tissue loss (gangrene)   |

• PTA is recommended in simple lesion with moderate to severe claudication





## Prevention of proximal PTA or bypass failure

PTA is effective in treating graft stenosis
Distal run-off influences long-term patency rates after femoropopliteal PTA or bypass surgery; patients with 2–3 patent vessels have significantly better long-term patency rates after femoropopliteal PTA than patients with 0–1 patent calf arteries.





## Subintimal Angioplasty: factor affecting primary patency sfter SFA intervention

N=51, primary patency at 12 Mo:50%



## **RESULTS of PTA**







## **Technical success**

- The technical success rates of infrapopliteal angioplasty range between 78% and 100%.
- Occlusion length >10 cm is an adverse factor both for technical success and patency.



#### **Durability of Endovascular Procedures**



#### **Results of Tibioperoneal Angioplasty**

| Author    | Year | No. of<br>Limbs | Patency<br>Rate (%) | Limb<br>Salvage(%) | F/U<br>(mos) |
|-----------|------|-----------------|---------------------|--------------------|--------------|
| Bakal     | 1990 | 43              | 86                  | 67                 | 24           |
| Schwarten | 1991 | 112             | 97                  | 83                 | 24           |
| Bull      | 1992 | 168             | 80                  | 85                 | 26           |
| Wagner    | 1993 | 158             | 94                  | 88                 | 17           |
| Durham    | 1994 | 14              | N/A                 | 77                 | 17           |
| Varty     | 1995 | 40              | 68                  | 77                 | 24           |

Fraser SCA. Radiology 1996;200:33-43

CardioVascular Research Foundation ANGIOPLASTY SUMMIT – TCTAP 2010

UNIVERSITY OF ULSAN COLLEGE MEDICINE



#### **Results of Tibioperoneal Angioplasty**

- 215 patients/266 limbs
  - 60% with lifestyle limiting intermittent claudication

Dorros G. Unpublished Data

- 40% with critical limb ischemia
- Successful Revascularization in 91% of lesions (408/449 lesions)
- Five Year Follow-Up
  - Need for surgical revascularization---8%
  - Above-Knee Amputation---2%
  - Below-Knee Amputation---7%
  - Transmetatarsal Amputation---9%
  - Survival---56%



#### Discrepancy between primary patency and clinical success

• Primary patency rates for PTA vary widely

- 13% to 81% at 1 year
- 48% to 78% at 2 years.

The limb salvage rate for PTA
- 77% to 89% at 1 year
- 94% at 3 years (one report).

- The limb salvage rate for surgery
   81% to 88% at 1 year
  - 88 at 2 years.
  - 00 at 2 years
  - 80 at 3 years.





#### Discrepancy between primary patency and clinical success

- This feature is more prominent in patients with tissue loss, especially with ulcers, than in those with rest pain.
- Ulcer healing reduces the oxygen demand and as a consequence less blood flow is generally required to maintain tissue integrity compared with the amount required for initial ulcer healing.
- Collaterals may therefore be sufficient to preserve tissue integrity if there is no further injury.







#### Factors Influencing the Patency of Infrapopliteal Artery after PTA

- Diabetes: lower rate of limb salvage & ulcer healing.
- Renal insufficiency
- Elevated lipoprotein (a)
- Presence of ulcer or gangrene
- Lack of angiographic improvement
- Extensive atherosclerotic disease



## **Complications of PTA**

- Complication rate : 2-6%
- Puncture site hematoma
- Acute arterial occlusions by spasm or dissection: (stent or liberal use of antispasmodics)
- Embolic occlusion: thrombolysis or thrombectomy
- Arterial perforations (3.7%): rarely require intervention
- 30-day mortality : 1.7% vs. bypass surgery :1.8-6%





#### Categories and definitions of Stent Fractures and Deformations

| Compression | Stent deformity with luminal narrowing        |
|-------------|-----------------------------------------------|
| Collapse    | <b>Complete compression of stent mesh</b>     |
| Type I      | Fracture of 1 stent strut                     |
| Туре ІІ     | Fracture of >1 stent strut                    |
| Type III    | Complete separation of stent segments         |
| Type IV     | Separation and misalignment of stent segments |
| Type V      | Spiral stent fracture                         |





#### **Categories of Stent Fractures**



#### Catheter Cardiovasc Interv. 2007 Sep;70(3):460-2





#### Incidence, Anatomical Location, and Clinical Significance of Compression and Fractures in Infrapopliteal Balloon-Expandable metal Stents

- 63 patients who had previously been treated with angioplasty and infrapopliteal stenting.
- 84 limbs, 191 lesions, 369 balloon-expandable coronary stents

**Anatomical location of infrapopliteal balloon-expandable stents** 

|                    | Upper      | Mid        | Distal                     | Total             |
|--------------------|------------|------------|----------------------------|-------------------|
| Tibioperoneal      |            | 34 (9.2%)  |                            | 34 (9.2%)         |
| Anterior tibial    | 89 (24.1%) | 46 (12.5%) | <b>60</b> ( <b>16.3%</b> ) | 195 (52.8%)       |
| Posterior          | 27 (7.3%)  | 17 (4.6%)  | 19 (5.1%)                  | <b>63</b> (17.1%) |
| tibial<br>Peroneal | 47 (12.7%) | 23 (6.2%)  | 7 (1.9%)                   | 77 (20.9%)        |
|                    |            |            |                            | 369 (100%)        |

**J ENDOVASC THER 2009;16:15-22** 

CardioVascular Research Foundation ANGIOPLASTY SUMMIT – TCTAP 2010

COLLEGE MEDICINE



## • Single fracture and most of the compression events occurred in the **distal third of the ATA.**

| Fractures and Deformations of Infrapopliteal Balloon-Expandable Stents<br>Anatomical incidence and Clinical implications |                 |                  |          |                |
|--------------------------------------------------------------------------------------------------------------------------|-----------------|------------------|----------|----------------|
| Event                                                                                                                    | Stent Material  | Artery           | Location | Angiography    |
| Fracture IV                                                                                                              | Stainless steel | Anterior tibial  | Lower    | Reocclusion    |
| Compression                                                                                                              | Stainless steel | Anterior tibial  | Upper    | Restenosis>50% |
| Compression                                                                                                              | Stainless steel | Anterior tibial  | Lower    | Restenosis>50% |
| Collapse                                                                                                                 | Cobalt-chromium | Anterior tibial  | Lower    | Reocclusion    |
| Compression                                                                                                              | Stainless steel | Anterior tibial  | Lower    | Reocclusion    |
| Compression                                                                                                              | Stainless steel | Anterior tibial  | Lower    | Reocclusion    |
| Collapse                                                                                                                 | Cobalt-chromium | Anterior tibial  | Lower    | Reocclusion    |
| Compression                                                                                                              | Stainless steel | Anterior tibial  | Lower    | Reocclusion    |
| Compression                                                                                                              | Cobalt-chromium | Anterior tibial  | Lower    | Reocclusion    |
| Compression                                                                                                              | Stainless steel | Anterior tibial  | Lower    | Restenosis>50% |
| Compression                                                                                                              | Stainless steel | Anterior tibial  | Lower    | Restenosis>50% |
| Compression                                                                                                              | Stainless steel | Posterior tibial | Lower    | Restenosis>50% |

J ENDOVASC THER 2009;16:15-22



FULSAN ASAN Medical Center

## **RESULTS of Surgery**







## **Result of bypass surgery** Total population: 517 patients



#### **Clinical outcomes @ 12 months**



Eur J Vasc Endovasc Surg 1999;17:77–83

Center

#### Patent vs. occluded graft Clinical outcomes @ 12 months



#### Early clinical outcomes after surgery Total population: 112 patients

Wound (operative and ischemic) healing : a mean of 4.2 months, and 22% had not achieved complete wound healing at the time of last FU or death.



#### Long-term outcomes Clinical outcomes @ 5 years



#### **BASIL** trial

(Multicenter randomized trial for infrainguinal severe ischemia)

#### Surgery vs. Balloon angioplsty

**Amputation-free survival** 

**Mortality-free survival** 





Lancet. 2005;366:1925-34

Medical Center

UNIVERSITY OF ULSAN

## New approach







### **68yo Male with Diabetic Foot**

## Hypertension, Long standing diabetes DM ESRD on HD











#### **First Treatment**

#### **Before**











#### However, Incomplete wound healing and Restenosis Occurred and We need more than balloon...

#### **Three months later**



2<sup>nd</sup> Treatment







## New approach

- Laser angioplasty
- Cutting balloon.
- Coated stent
- Drug-eluting stents
- Absorbable metal stent





## New approach

- Laser angioplasty
- Cutting balloon.
- Coated stent
- Drug-eluting stent
- Absorbable metal stent





## Laser Angioplasty for Critical Limb Ischemia Results of the LACI Phase 2 Clinical Trial









## LACI Phase 2 Registry

- Prospective, multi-center study
- Patients with CLI
  - Rutherford Category 4-6
  - poor surgical candidates
- **Treatment:** ELA of SFA, popliteal and/or infrapopliteal arteries, with adjunctive PTA and optional stenting
- Primary Endpoint: limb salvage at 6 months
   freedom from amputation at or above the ankle







#### **Vascular Lesion Locations**



## Angiographic Results Visual assessment

|                 |           | <u>%DS</u>      |                   |              |                |
|-----------------|-----------|-----------------|-------------------|--------------|----------------|
| <b>Location</b> | <u>n*</u> | <u>Baseline</u> | <u>Post-laser</u> | <u>Final</u> | <b>Stented</b> |
| SFA             | 280       | 91%             | 56%               | 16%          | 61%            |
| Popliteal       | 37        | 94%             | 53%               | 14%          | 38%            |
| Infrapopliteal  | <b>89</b> | 92%             | 53%               | 24%          | 16%            |

\*n = number of treated lesions

• Laser provided about half of the net luminal gain

- Stenting was performed preferentially in larger vessels
- Below the knee, final %DS was slightly higher







## **Adjudicated SAEs**

|                               |                    | All              |              |
|-------------------------------|--------------------|------------------|--------------|
|                               | <u>In-hospital</u> | <u>Follow-up</u> | <u>Total</u> |
| Death                         | 0                  | 15               | 15           |
| Major amputation              | 2                  | 9                | 11           |
| Nonfatal MI or Stroke         | 0                  | 2                | 2            |
| Reintervention                | 1                  | 23               | 24           |
| Hematoma w/ surgery           | 1                  | 0                | 1            |
| Acute limb ischemia           | 0                  | 1                | 1            |
| <b>Perforation w/ surgery</b> | 0                  | 0                | 0            |
| Bypass                        | 0                  | 3                | 3            |
| Endarterectomy                | 0                  | 1                | 1            |

48 (33%) of patients experienced >1 SAE





## **6-Month Results**

| Total enrollment                                                   | 155 limbs            |
|--------------------------------------------------------------------|----------------------|
| death                                                              | 17                   |
| lost to follow-up                                                  | <u></u>              |
| <b>Reached 6-month follow-up</b>                                   | 127                  |
| Major amputation among survivors                                   | 9                    |
| Survival with limb salvage                                         | <b>118/127 = 93%</b> |
|                                                                    |                      |
| CardioVascular Research Foundation ANGIOPLASTY SUMMIT – TCTAP 2010 |                      |

ASAN Medical Center

## Main Endpoints per-patient basis

|                        | LACI       | <u>Control</u> | p     |
|------------------------|------------|----------------|-------|
| Surgical intervention* | 2%         | 34%            | <.001 |
| At 6 months:           |            |                |       |
| Died                   | 10%        | 13%            | ns    |
| Survived with:         |            |                |       |
| Limb salvage           | <b>93%</b> | 87%            | ns    |
| <b>Persistent CLI</b>  | 34%        | 31%            | ns    |

\* bypass or endarterectomy







## New approach

- Laser angioplasty
- Cutting balloon.
- Coated stent
- Drug-eluting stents
- Absorbable metal stent





## **Cutting balloons**

 Although application of this technique in peripheral arteries is still limited, it appears that it is effective in the treatment of esistant femorodistal bypass stenoses and complex infrapopliteal obstructions such as ostial and bifurcational lesions



## New approach

- Laser angioplasty
- Cutting balloon.
- Coated stent
- Drug-eluting stents
- Absorbable metal stent





#### Carbofilm coated stents vs. PTA Prospective randomized trial



## New approach

- Laser angioplasty
- Cutting balloon.
- Coated stent
- Drug-eluting stents
- Absorbable metal stent





**SiroBTK study with SES** 30 patients, 62 arteries, 106 SES Primary endpoint: clinical improvement and healing of ulcer @ 1 & 7.7 months

- Angiographic and procedural success : 100%.
- 7 months outcomes
- Amputatiton 1 toe in one patient and 1 mid-foot in another.
- Limb salvage : 100% of patients.
- Death : two cardiac deaths unrelated to CLI
- Three recurrent homolateral claudication.
- Mid-term clinical improvement : 100%
- Primary patency: 97% (56 patent arteries on 58 arteries).

J Endovase Ther. 2007;14:241-50.



#### **SES vs. BMS for CLI** SES (29 pts) vs. BMS (29 pts) for bailout use Endpoint: 1-year angiographic and clinical outcome



#### **BTK SES registry Prospective nonrandomized single center registry** SES for Sxmatic focal infrepopliteal obstruction (n=74 pts)



#### **BTK SES registry Prospective nonrandomized single center registry** SES for Sxmatic focal infrepopliteal obstruction (n=74 pts)



Patency at 24 months Primary: 89.2% Secondary: 95.9%

Endovascular today 2007;August.71-74

#### **PaRADISE trial**

(PReventing Amputation using Drug-elutlng StEnt) Critical limb ischemia (106 pts, 108 limbs, SES 83%, PES 17%)

- Stent number/limb: 1.9±0.9, Stent length : 60±13 mm
- Target limb revascularization: 15%
- Angiographic restenosis: 12% (follow-up rate 35%)





## **On-going trial**

| Study                    | Test device   | Control       | Number |
|--------------------------|---------------|---------------|--------|
| <b>Drug-eluting bal</b>  | loon          |               |        |
| PICCOLO                  | PEB           | Balloon       | 114    |
| <b>Drug-eluting</b> ster | nt            |               |        |
| ACHILESS                 | Cypher select | Balloon       | 200    |
| DESTINY                  | Xience V      | Vision (BMS)  | 140    |
| YUKON                    | SES (Yukon)   | Stent (Yukon) | 130    |







## New approach

- Laser angioplasty
- Cutting balloon.
- Coated stent
- Drug-eluting stents
- Absorbable metal stent





### **Absorbable Magnesium Stent**



| Recoil         | ~ 5% |
|----------------|------|
| Foreshortening | < 5% |

\* Investigational device only - not for sale -

#### FEA: Fully expanded state





ASAN Medical Center

## **Clinical Results**

#### **BEST-BTK**

First in Man experience with the Biotronik absorbablE metal StenT Below The Knee

• 20 CLI patients (Rutherford 4-5) with BTK pathology

 Implants performed between December '03 – January '04





## Patient demographics (n=20)

| Male                     | 10    | 50%          |
|--------------------------|-------|--------------|
| Female                   | 10    | 50%          |
| Average age              | 76 yr | rs (59 - 96) |
| Clinical vascular status |       |              |
| - Rutherford Class IV    | 9     | 45%          |
| - Rutherford Class V     | 11    | 55%          |



## Lesion description (n=20)

Average lesion length Average vessel diameter Average stenosis Dissection Ulceration Thrombus Calcification



## Limb Salvage After One Year Limb Salvage Rate



## **High Patency Rate Primary Clinical Patency**



CardioVascular Research Foundation ANGIOPLASTY SUMMIT – TCTAP 2010

UNIVERSITY OF ULSAN

## **Conclusions I**

- PTA is the preferred treatment strategy in patients with infrapopliteal occlusive disease who typically present with critical limb ischemia.
- With tremendous improvements in interventional devices and techniques, long and multiple stenotic and occlusive lesions can be treated successfully with PTA
- PTA carries a lower morbidity and mortality compared with surgery and would be considered as the first treatment option in all patients with critical limb ischemia who would otherwise be offered distal bypass surgery or amputation, as failure rarely precludes surgery.





## **Conclusions II**

- Clinical success is superior to angiographic patency and repeat angioplasty can be performed if there is recurrence of ischaemic symptoms and signs.
- SESs have a consistent and profound effect on the reduction of reobstructions after endovascular procedures.
- while there is growing familiarity and acceptance of DESs in endovascular procedures to treat BTK lesions, we should be considered against the fact that there was no randomized clinical trial data comparing DESs with the current BTK interventional standard of PTA.



COLLEGE MEDICIN

