Limitations of Angiography in Evaluating the Left Main Coronary Artery Disease

> Alexandra Lansky, MD Yale University School of Medicine University College London



Virtues of Angiography: Left Main CAD is Heterogenous Varying in Complexity and Burden of Disease



#### Isolated Ostial LM

#### Distal Bifurcation +/- Calcified Diffuse 3 VD



## SYNTAX Left Main Subset 2 Year MACE According to Syntax Score Tertile



## **Distal LM bifurcation PCI has higher MACE** than PCI of ostial and midshaft lesions



J Am Coll Cardiol 2006;47:1530-37

Yale Cardiovascular Research Group

YCRG

Eur Heart J 2010;30:2087-94



# **Distal Left Main Involvement**



# Distal left main disease is a marker of more extensive and multi-vessel CAD

### Data from the SYNTAX LM PCI Cohort

|                       | Distal<br>(n = 229) | Non-Distal<br>(n = 128) | p value |
|-----------------------|---------------------|-------------------------|---------|
| Total SYNTAX score    | 31.4 ± 12.3         | 22.1 ± 10.1             | < 0.001 |
| LM only, %            | 7.4                 | 19.5                    | < 0.001 |
| LM + 1VD, %           | 13.5                | 28.1                    | < 0.001 |
| LM + 2VD, %           | 36.2                | 22.7                    | 0.008   |
| LM + 3VD, %           | 42.8                | 29.7                    | 0.01    |
| Procedural success, % | 82.5                | 92.7                    | 0.008   |
|                       |                     |                         |         |



Extent of CAD and Syntax Score predicts 2-year cardiac mortality regardless of lesion location



\* After adjusting for confounders: HR 2.89, 1.07-7.85, p = 0.037. \*\* After adjusting for confounders: HR 6.09, 1.00-36.9, p = 0.049. P for interaction between SYNTAX score, lesion location and treatment: 0.249

Capodanno et al. JACC Interv 2009;2:731-8



## Medina Classification: Easy to use but...

- Ignores the size of the side branch
- Ignores the severity and length of the side branch lesion
- Ignores the angle of the side branch
- Does not help with treatment selection
- Does not predict prognosis





#### YCRG

## Diagnostic Conundrums in LM Disease Ostial SB Lesion Severity at Baseline





## Diagnostic Conundrums in LM Disease Ostium and Shaft Lesion Severity at Baseline



#### YCRG<sup>0</sup> Yale Cardiovascular Research Group

Courtesy G Mintz, MD







## Ostial SB Lesion Severity after SB Jailing



Correlation between FFR and % Stenosis



The optimal cutoff value for percent stenosis to predict functionally significant stenosis was 85% (Sensitivity: 0.80, Specificity: 0.76)

Yale Cardiovascular Research Group

YCRG

Koo, B.-K. et al. JACC 2005;46:633-637



# **SB Stent Underexpansion After Crush**

Final optimal angiographic result





| Variable                           | PV              | SB             | Ρ       |
|------------------------------------|-----------------|----------------|---------|
| Stent minimum CSA, mm <sup>2</sup> | 6.5 ±1.7        | 3.9 ± 1.0      | <0.0001 |
| Stent expansion, %                 | 92.1 ± 1<br>6.6 | 79.9 ±<br>12.3 | 0.02    |
| Stent CSA<4 mm <sup>2</sup>        | 10%<br>(2/20)   | 55%<br>(11/20) | 0.007   |
| Stent CSA<5 mm <sup>2</sup>        | 20%<br>(4/20)   | 90%<br>(18/20) | <0.0001 |

## YCRG

Yale Cardiovascular Research Group

Costa R. et al, JACC 2006; 46: 599-605.



## Correlation Between IVUS and QCA Final MLD in Parent Vessel and Side Branch Following "Crush" Stenting



#### YCRG Yale Cardiovascular Research Group

Costa R. et al, JACC 2006; 46: 599-605.



# Advantages of 3D QCA vs 2D QCA

- Elimination of out-of-plane magnification and foreshortening
- More accurate lesion length and severity assessment
- Assessment 3D bifurcation angles and optimal viewing angle
- Assessment vessel cross-sectional area and volume
- Assessment vessel tortuosity





# **XA-IVUS Co-Registration**



Register by identifying the same marker (sidebranch, stent border, etc) as baseline positions in both image modalities;

After that, markers in different views are synchronized;

Stent-positions can be mapped from IVUS/OCT to XA fluoroscopy to plan stent deployment;

Vessel dimensions and plaque information can be assessed at every corresponding position.

|      | QCA  | IVUS |
|------|------|------|
| MLD  | 1.57 | 1.85 |
| Area | 2.07 | 2.88 |



## Yale Cardiovascular Researchivus/OCT co-registration, Tu et al

Lumen area

# **XA-OCT co-registration**



# Yale Cardiovascular Research US/6CT to-registration, Tu et al

😽 Yale

# Conclusions

- Angiography remains the gold standard in risk stratifying patients with Left Main Disease
- IVUS Guidance is important for assessing ambiguous lesions and procedure optimization
- 3D angiographic reconstruction allows more accurate angle measures and lesion length
- 2D and 3D co-registration with other imaging modalities (IVUS, VH and OCT) will provide greater procedural insights to optimize results

