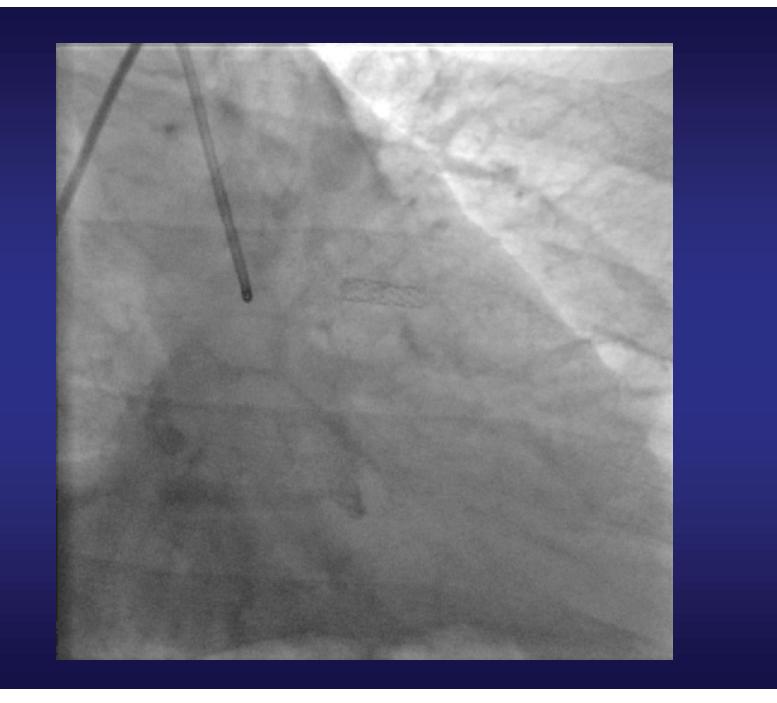
Brachytherapy vs DES: Is the Answer in Yet?

Alan C. Yeung, M.D.

Stanford University School of Medicine

Brachytherapy

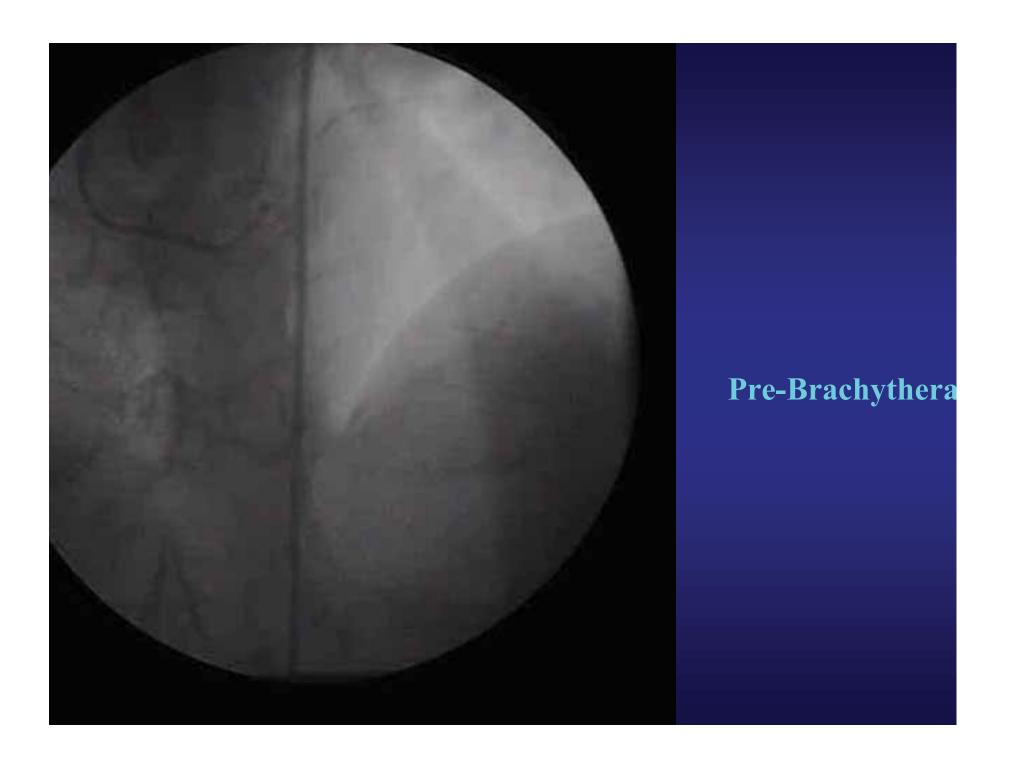
Drug Eluting Sten


DES vs XRT

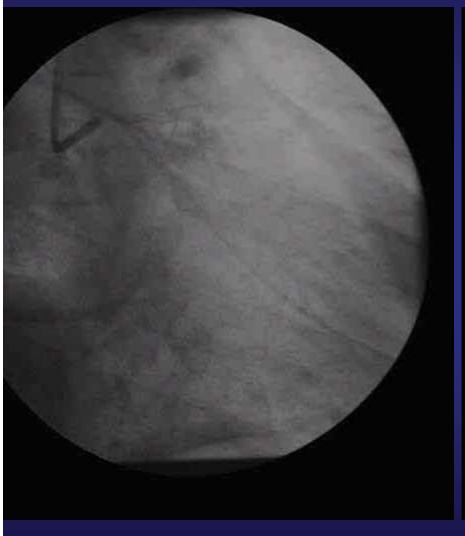
- Cost: both expansive
- •One may be faster than the other
- •One may need more maintenance
- •One may be better in one situation than the other
- •Bottomline: Performance and head-to-head comparison

DES vs XRT: Clinical Problems

- BMS in-stent restenosis
 - All in-stent
 - Significant out-of-stent restenosis
- Failed brachytherapy
 - Which DES?
- DES in-stent restenosis
 - Brachytherapy
 - The other DES?


Top 10 Reasons Why We still Need Intravascular Brachytherapy in ISR

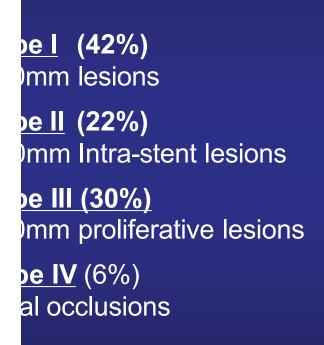
- 10 We still have the brachytherapy system!
- 9 DES length has to be longer than the original ste
- 8 Brachytherapy for ISR is cheaper than DES (per case vs per mm, common treatment length 60mm
- 7 Side branch occlusion (snow-plowing) will be common in DES, access will be difficult (double
- 6 There is little data showing DES is more effective ISR than XRT

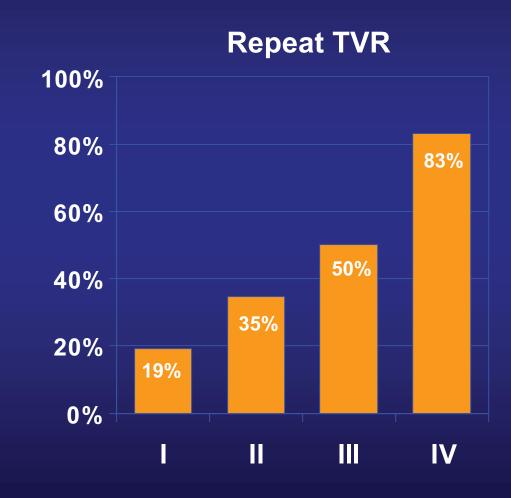

Top 10 Reasons Why We still Need Intravascular Brachytherapy in ISR

- **#5** Is the drug dosage enough for ISR?
- #4 Is multiple DES overlapping a problem in DES
- **#3 What do you do to those DES with ISR?**
- **#2 Brachytherapy is now streamlined**
- **#1 It is a proven effective therapy in the real world**

It is a proven effective therapy in the real world (and it is streamlined)

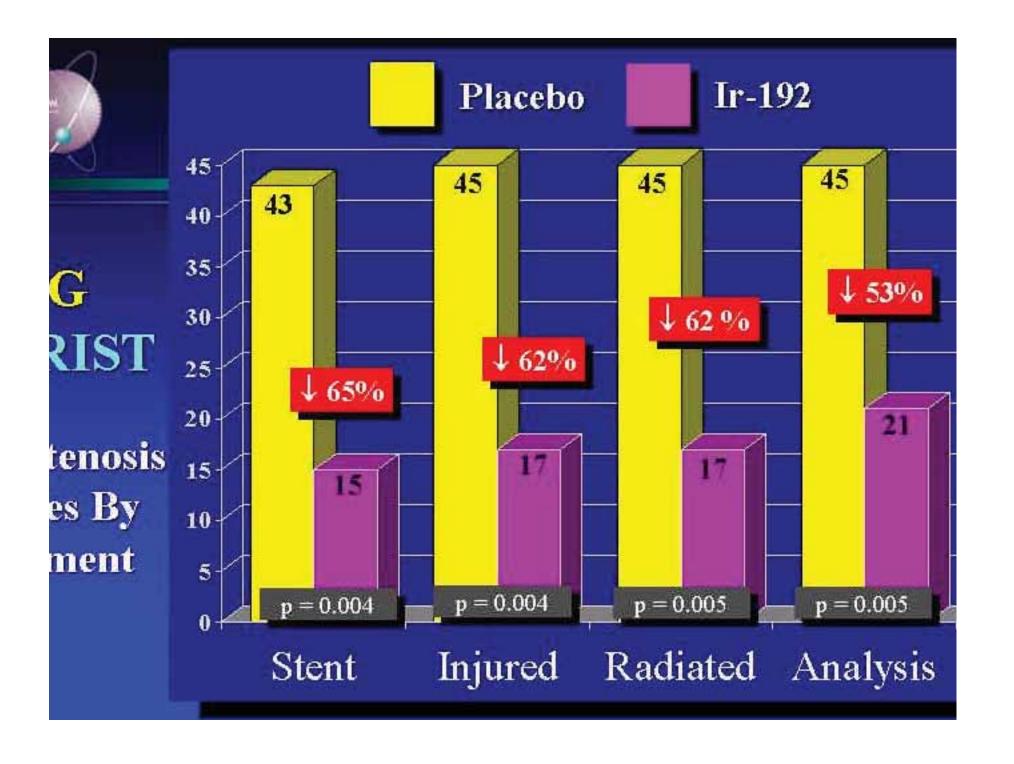
Post-Brachytherapy



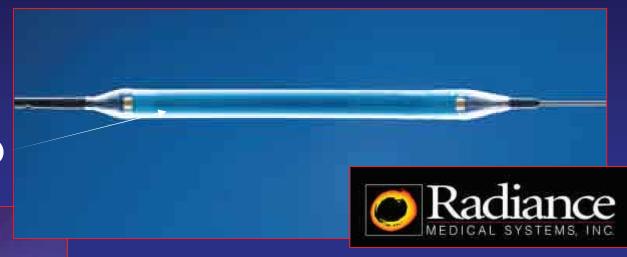


F/U-Brachytherapy

In-Stent Restenosis Patterns and Recurrence Rates



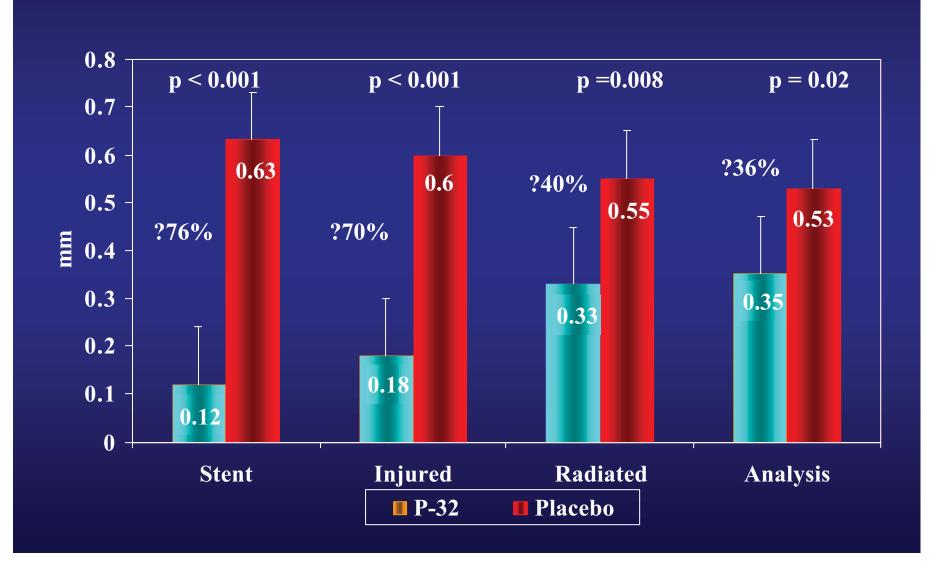
ran R et al. <u>Circulation</u> 1999;100:1872-8.


Reported Clinical Trials Using Vascular Brachytherapy For In-Stent Restenosis

Source	Length	PTS	Restenc	sis %
	(mm)	(n)	Placebo	Treated
192Ir	15.3	35	70.5	11.1
192Ir	23.7	130	58.3	19.0
192Ir	20.2	252	50.5	21.6
192Ir	19	125		23.0
192Ir	32	120	71.0	32.0
90Y	20.6	50		22.0
Sr/90	17	476	42.2	14.2
P32	17	332	48.0	16.0
P32	17	26	(manus)	0.0
	192Ir 192Ir 192Ir 192Ir 192Ir 192Ir 90Y Sr/90 P32	(mm) 192Ir 15.3 192Ir 23.7 192Ir 20.2 192Ir 19 192Ir 32 90Y 20.6 Sr/90 17 P32 17	(mm)(n)192Ir15.335192Ir23.7130192Ir20.2252192Ir19125192Ir3212090Y20.650Sr/9017476P3217332	(mm) (n) Placebo 192Ir 15.3 35 70.5 192Ir 23.7 130 58.3 192Ir 20.2 252 50.5 192Ir 19 125 192Ir 32 120 71.0 90Y 20.6 50 Sr/90 17 476 42.2 P32 17 332 48.0

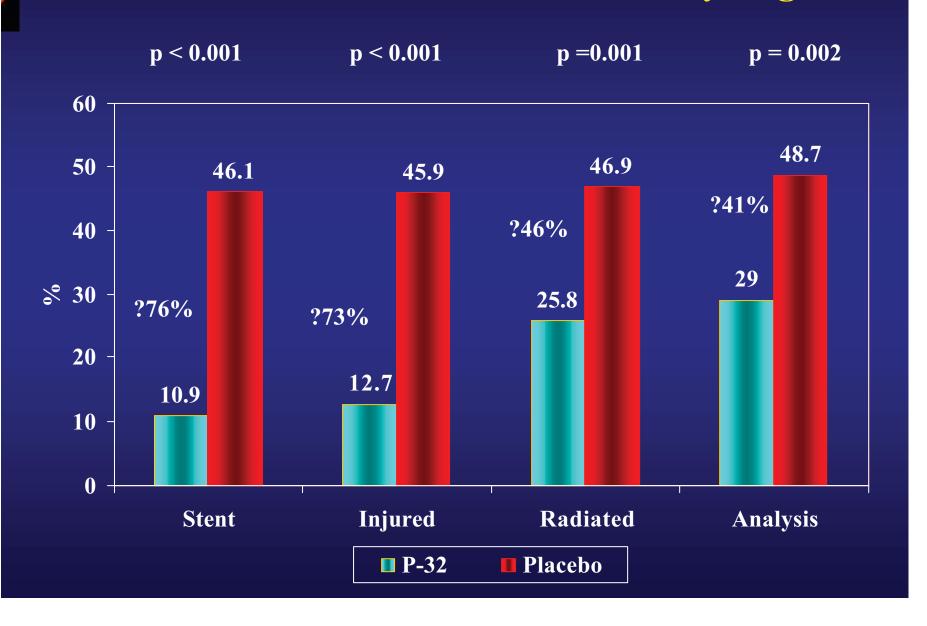
RDX Balloon Radiation System

Radioactive Balloon Material Source: P-32 (beta)

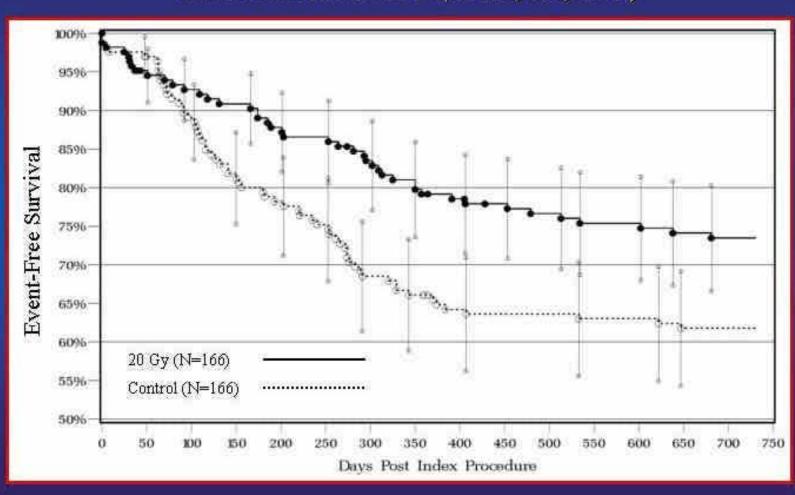

Investigatioal Device

BRITE II Clinical Outcomes to 12 Months

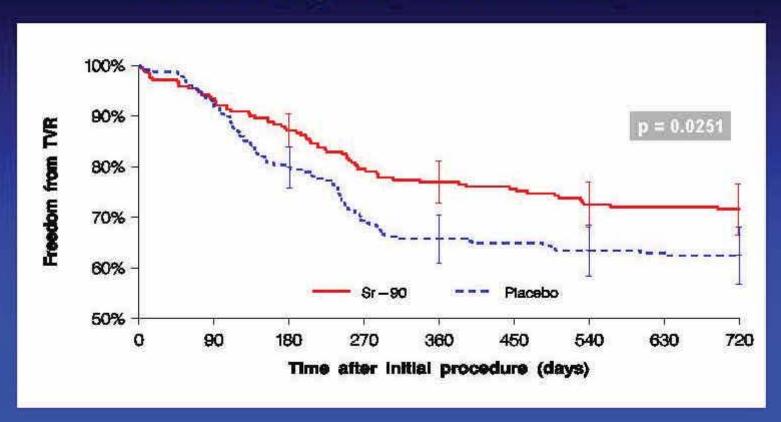
	P-32	Placebo	*P	? %
(follow up)	309	87		
ΜI				
Q-wave	1%	0	NS	
Non-Q-wave	3.6%	3.4%	NS	
ΓVR	27.5%	48%	0.02	? 42%
PCI	21.5%	48%	0.02	? 55%
CABG	7.7%	2.3%	NS	
Death	2%	6%	NS	
Any MACE	35%	59%	0.02	?41%


BRITE II

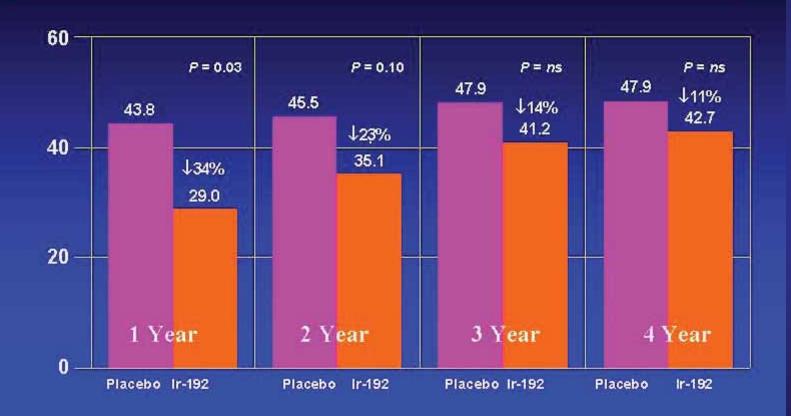
Late Loss By Segment


BRITE II

Restenosis Rates by Segment



INHIBIT Trial


Freedom from MACE (Death, MI, TLR)

START TRIAL Freedom from TVR - 24 mo.

Gamma One 4 Year Clinical FU: TLR

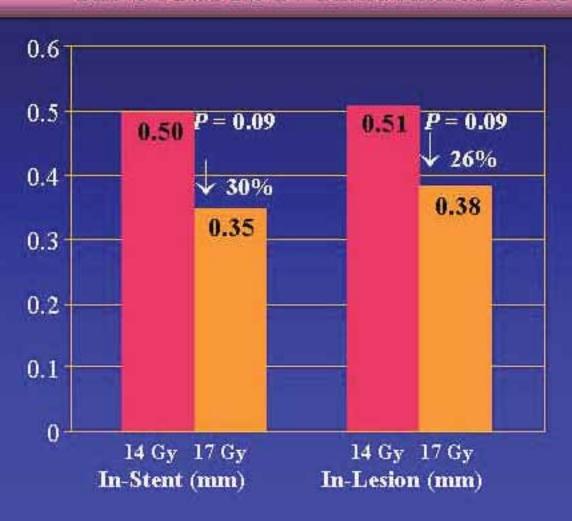
an Brachytherapy Results be Improved

The SCRIPPS IV Randomized Trial

ouble blind randomized trial

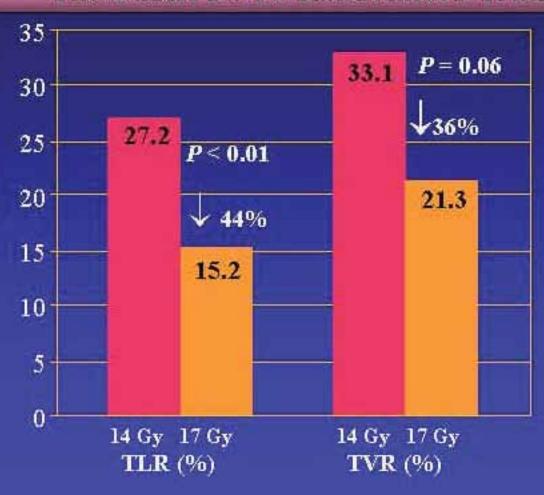
4 Gy Vs. 17 Gy at 2 mm from the source

atients = 358

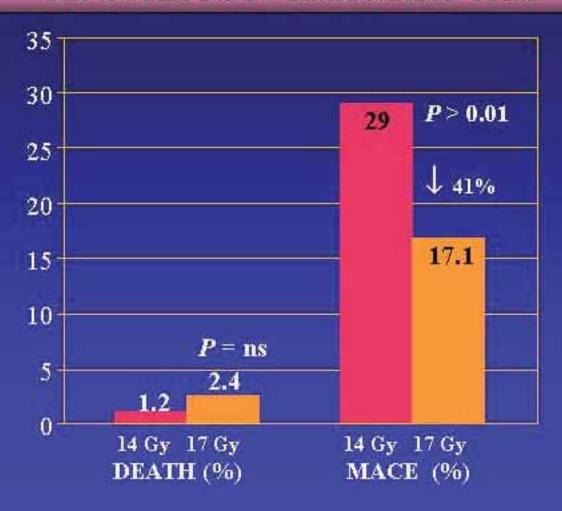

ites: Scripps Clinic and Lenox Hill

nclusion criteria: In-stent restenotic native and SV esions up to 75 mm in length

Indpoints = Late loss, Restenosis, TLR, TVR, MAC


Late Loss

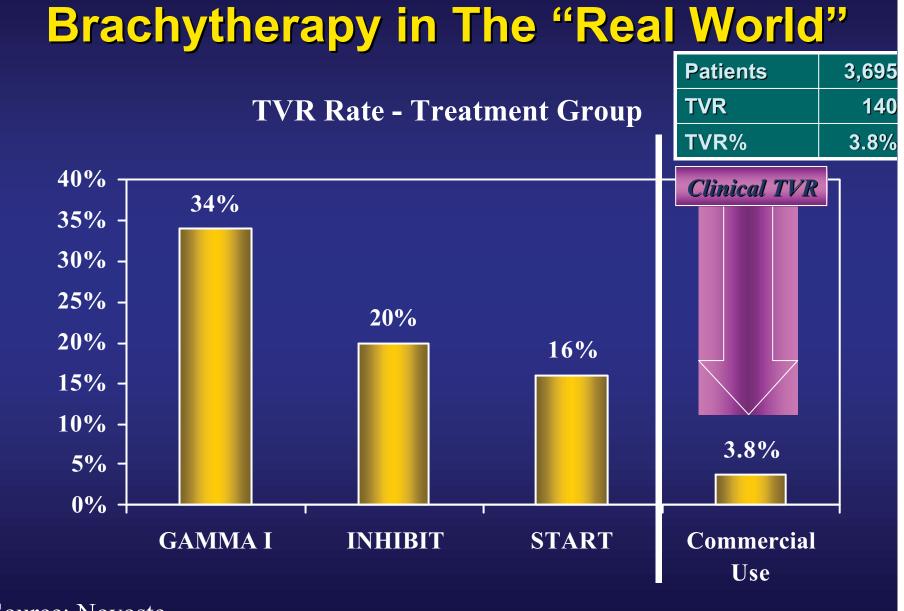
The SCRIPPS IV Randomized Trial


Target Lesion and Vessel Revascularization

The SCRIPPS IV Randomized Trial

Death and MACE

The SCRIPPS IV Randomized Trial


Summary

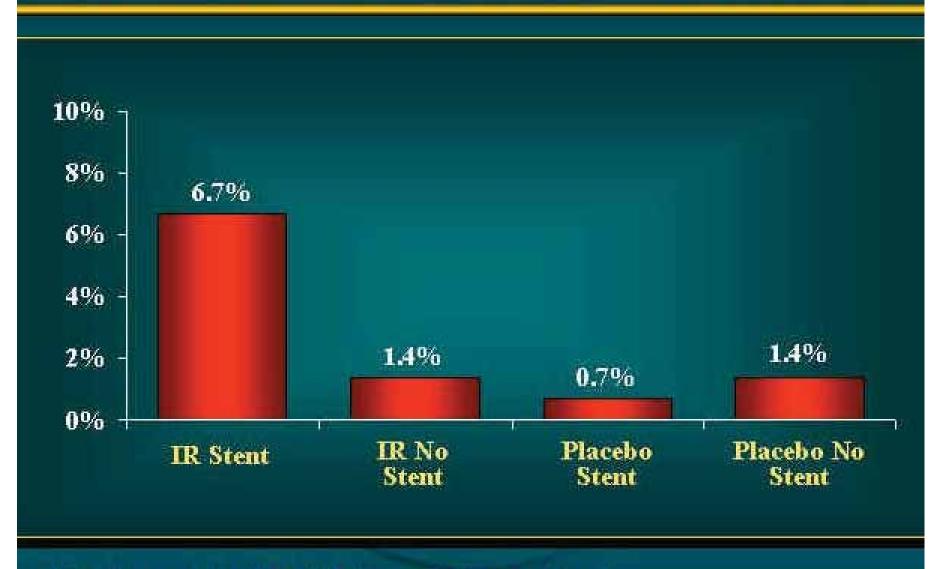
The SCRIPPS IV Randomized Trial

A 21.4% increase in gamma radiation dose (from 14 to 17 Gy) resulted in:

- 18% reduction in restenosis (in-lesion)
- 26% reduction in late loss (in-lesion)
- 44% reduction in TLR
- 36% reduction in TVR
- 41% reduction in MACE
- 75% reduction in total occlusions
- No increase in early or late thromboses

The Efficacy of Vascular Brachytherapy in The "Real World"

Source: Novoste


Real Life Use of IVB at Stanford

Over 750 cases done at Stanford (all three beta systems) since approval, 4 days availability a week

One of the simplest, most predictable procedure From end of last balloon to finish, less than 15 minutes

Mean length 25mm, No complications, No SAT Clinical restenosis less than 5%

Distribution of Late Thrombosis³

*Scripps-1, WRIST, and Gamma-1

DES ISR Studies

Outside United States

- Observational Registries
 - Sao Paulo, Brazil (Sosa/Abizaid)
 - Rotterdam, the Netherlands (Serruys)
 - Milan, Italy (Colombo)
 - Leuven, Belgium (DeScheerder)
 - TAXUS III (Grube/Serruys)
- Comparative Registries
 - Research (Serruys)

Clinical Studies Factors

	# pts	study design	DES system		
Sao Paulo	25	registry	Cordis/Sirolimus		
Rotterdam	16	registry	Cordis/Sirolimus		
_euven	21	registry	Cook/Paclitaxel		
Milan	15	registry	Quanam/Paclitaxel		
TAXUS III	28	registry	BSC/Paclitaxel		
Total = 105 Patients					

Demographics and Patterns of ISR

	DM	VBT failure	Focal	Diffuse	сто
ao Paulo	28%	0	40%	60%	0
otterdam	27%	19%	19%	62%	19%
euven	29%	5%	na	na	na
ilan	30%	13%	40%	53%	7%
III SUXA	14%	0	35%	61%	4%

Angiographic Results (QCA)

	Late loss (mm)	Restenosis
Sao Paulo	-0.05 ⇒0.16	4%
Rotterdam	0.26 ⇒ 0.51	12.5%
Leuven	na	14.3%
Milan	0.47 ⇒1.36	13% ➡ 61.5%
TAXUS III	0.54	16%

Clinical Outcomes

	Death	MI	TLR	Stent thrombosis
o Paulo	O	0	0	O
tterdam	12.5%	6.3%	12.5%	12.5%
uven	na	na	na	9.5%
an	0	20%	20% ⇒40%	6.7%
XUS III	0	7.2%	21.4%	0
ACC III	9	1.270	Z.1. T/O	9

Lessons learned...

- Small observational registries indicate that in "simple" ISR patients, DES results are favorable with excellent short and medium-term safety and efficacy
- In "complex" ISR patients (e.g. VBT failures), clinical outcomes are less favorable and less predictable with ? more frequent SAT
- There is clear evidence of late "catch-up" in some studies (Milan and to a lesser degree in Sao Paulo/Rotterdam)…late FU is essential
- Technique is important, esp. avoidance of interstent gaps and full lesion coverage (Leuven and TAXUS III)

Sirolimus-Eluting Stent for Complex In-Stent Restenosis (n = 16)

Degertekin et al JACC 2003; 184-9

Lesion Length (mm) = 18.4

Lesion Length > 10 mm = 81.2%

revious Brachytherapy = 4 (25%)

linical events/Restenosis = 6/16 (37.5%)

Death = 2/16 (12.5%) 1 sudden, 1 late-due to CHF

/II = 1/16 (6%) thrombosis at 7 mos (off Plavix)

Restenosis = 3/15 (20%) 1 silent occ p brachy, 1 Ht tx

Treatment of ISR in the Real World

Non-randomized, Single Center Registry

Patients = 206 with ISR treated with Cypher stents

6 mos FU = 108 pts

TVR = 7 (6.5%)

» Barragan et al (Marseille, France), AHA 2003

DES for In-Stent Restenosis

Non-randomized, Single Center Registry

Patients = 126 pts with ISR, Rx' with Cypher stents

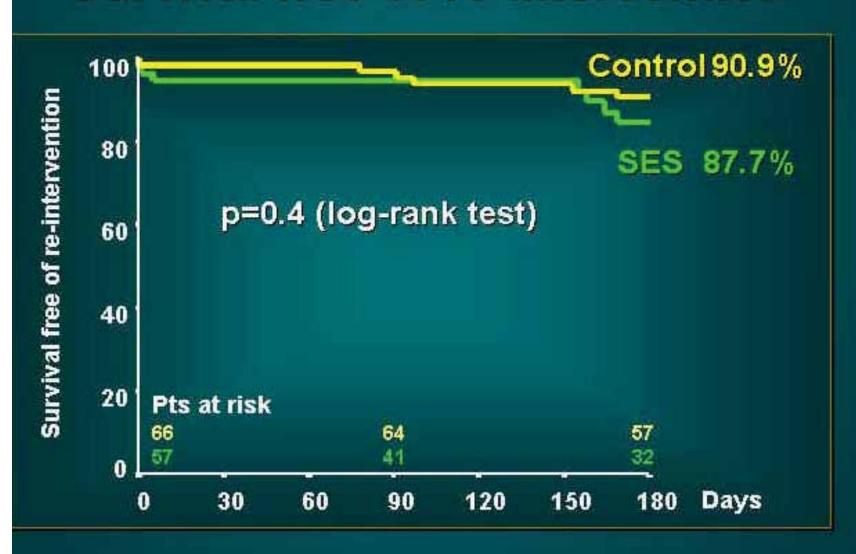
$$TLR = 5 (4\%)$$

Restenosis = ?

» Medina et al (Cordoba, Spain) AHA 2003

Research - ISR

Research - ISR


ehra	an lesion type	Control (n=74)	SES (n=67)
-II	Focal / Diffuse	78.4 %	53.7 %*
I-IV	Proliferative / Total occlusion	21.6 %	46.3 %*
revi	ous Brachytherapy	6%	25%*
* p=0	0.002		

Mehran et al. Circulation 1999: 100: 1872-78

Research – ISR Clinical Follow-up (6 months)

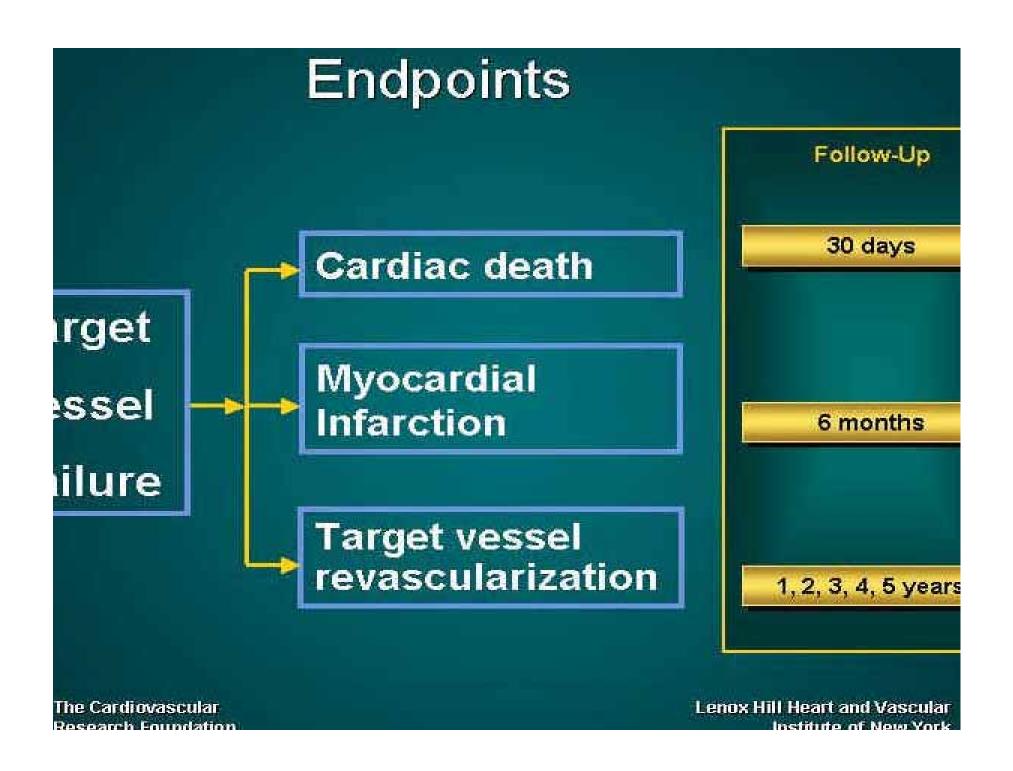
	Control (n=66)	SES (n=57)	P value
Death, %	1.5	0	1.0
Non-fatal MI, %	1.5	1.8	1.0
Repeat revasc, %	9.1	12.3	0.6
MACE, %	12.1	14.0	0.8

Research – ISR Survival free of re-intervention

DES ISR Studies

United States

- Observational Registries
 - SECURE (Teirstein)
- Randomized Clinical Trials
 - SISR (Holmes)
 - TAXUS V ISR (Stone/Ellis)


SECURE Compassionate" Sirolimus Stenting

Study Objective:

 Multicenter study to allow treatment with the Sirolimus-eluting Bx VELOCITY™ stent in patients with a serious disease or condition for which there is no generally acceptable alternate treatment available

Study Design:

- 250 patients total, angiographic and IVUS follow-up for brachytherapy failure patients
- Primary endpoint of target vessel failure
- First patient enrolled March 13, 2002

SECURE - Patient Demographics

	Sirolimus (%) (n=202 pts)
Male	71.8
Mean age (years)	61.9
Prior MI	45.5
Restenotic target	86.7
Diabetes Mellitus	38.6
Anginal class 3 or 4	56.9
Prior brachytherapy	72.3
Graft as target	20.8

The Cardiovascular

Research Foundation

Lenox min near and Vascular

Institute of New York

SECURE – Radiation Failure Vs No Radiation

	Radiation Failure* (n=146 pts)	No Radiation Failure (n=56 pts)	P-value
Age (mean)	62.7	60.0	0.17
Diabetes (%)	39.7	35.7	0.60
Ang Class 3/4 (%)	56.2	58.9	0.72
Lesions/pt (#)	1.5	1.7	0.036
Restenotic (%)	98.6	68.3	<0.001
Graft as target (%)	24.3	15.5	0.13

*patients with at least one lesion previously treated with brachytherapy

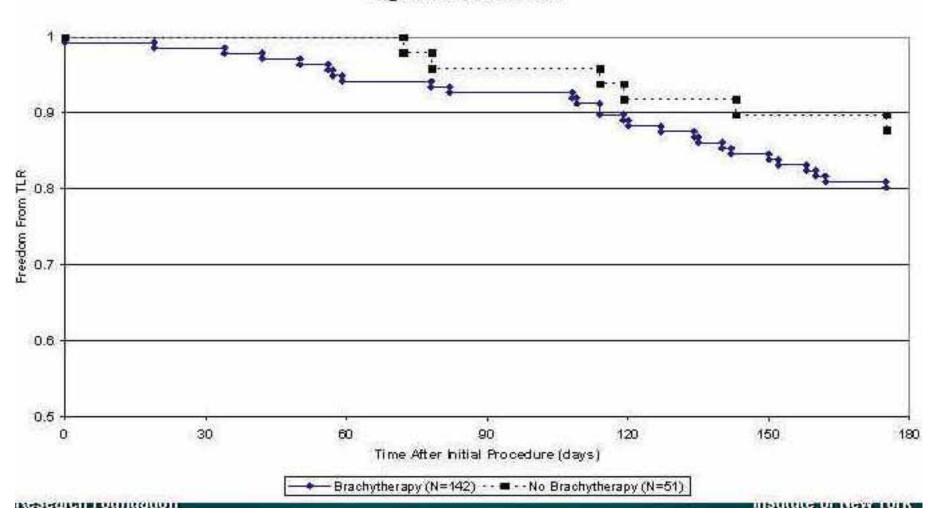
SECURE – Events In & Out of Hospital to 6 Months

	Radiation Failure* (n=146 pts)	No Radiation Failure (n=56 pts)	P-value
ean tollow-up ays)	147	142	1.00
eath (%)	1.4	1.8	1.00
! (%)	2.7	O	0.58
Q-wave	0.7	0	1.00
Non-Q wave	2.1	0	0.29
ACE (death, IVII, _R)	12.3	8.9	0.62

"patients with at least one lesion previously treated with brachytherapy

SECURE – Events In & Out of Hospital to 6 Months

	Radiation Failure* (n=146 pts)	No Radiation Failure (n=56 pts)	P-value
ean tollow-up	147	142	1.00
avs) .R (%)	11.6	5.4	0.29
/R (%)	11.6	5.4	0.29
ent thromb <30 lys (%)	0.7	0	1.00
ent thromb >30 ys (%)	1.4	0	0.56


*patients with at least one lesion previously treated with brachytherapy

SECURE – Target Lesion Revascularlization Radiation Failure Vs No Radiation

Survival Free From TLR

By Prior Use of Brachytherapy on at Least One Lesion

Log Rank P-Value = 0.23

DES ISR Studies – United States

Lessons from SECURE...

In an "ultra-complex" group of "no option" patients with recalcitrant ISR (usually despite previous VBT):

- Sirolimus DES therapy resulted in favorable short and medium-term clinical outcomes with infrequent stent thrombosis and reduced overall TLR/TVR events (6 mos FU of eligible subgroup)
- ISR after failed VBT, was associated with a higher 6 mos TLR and TVR (21% and 25%), and although benefited from DES, still represents a challenging patient cohort
- Many technique and adjunctive pharmacology issues require further refinement

SECURE – Events In & Out of Hospital to 6 Months

193 patients with 6 month follow-up

	Radiation Failure* (n=142 pts)	No Radiation Failure (n=51 pts)	P-value
R (%)	19.0	11.8	0.24
R (%)	19.7	11.8	0.20
F (%)	21.8	11.8	0.12
ent thromb <30 days (%)	1.4	0	1.00
ent thromb >30 days (%)	1.4	0	1.00

*patients with at least one lesion previously treated with brachytherapy

SECURE - 8 Month QCA

Lesions with previous brachytherapy

	Sirolimus (%) (n=56 lesions)
In-stent Binary Restenosis (%)	33.9
In-lesion Binary Restenosis (%)	37.5
In-stent Late Loss (mm)	0.81
In-lesion Late Loss (mm)	0.63

SECURE - Conclusions

Early evidence indicates:

- Sirolimus stents will be an effective therapy for most brachytherapy failure patients
- In this high restenosis risk population, results following sirolimus stenting are not as consistently favorable as in non-brachytherapy failure patients
- Continued follow-up is required before final late thrombosis and late restenosis rates are known.

In-stent Restenosis Registry

colimus-Eluting CypherTM Stent to treat k

N = 41 patients ISR

Vessel size: 2.5-3.5mm

1 or 2 - 18mm CypherTM stent

- Open-label safety study with the CypherTM stent
- All patients received Aspirin (325 mg) + Clopidogr (75 mg, 60 days)

In-stent Restenosis Registry

Endpoints

- 30-day, 4-month, 1-year, up to 5-year MACE
- 4-month, 1-year FU QCA & IVUS

<u>Sites</u>

Patients

Inst. Dante Pazzanese, Sao Paulo

n = 25

Thoraxcenter, Rotterdam

n = 16

Independent Core Labs

QCA by Brigham and Women's, Boston IVUS by Cardialysis, Rotterdam

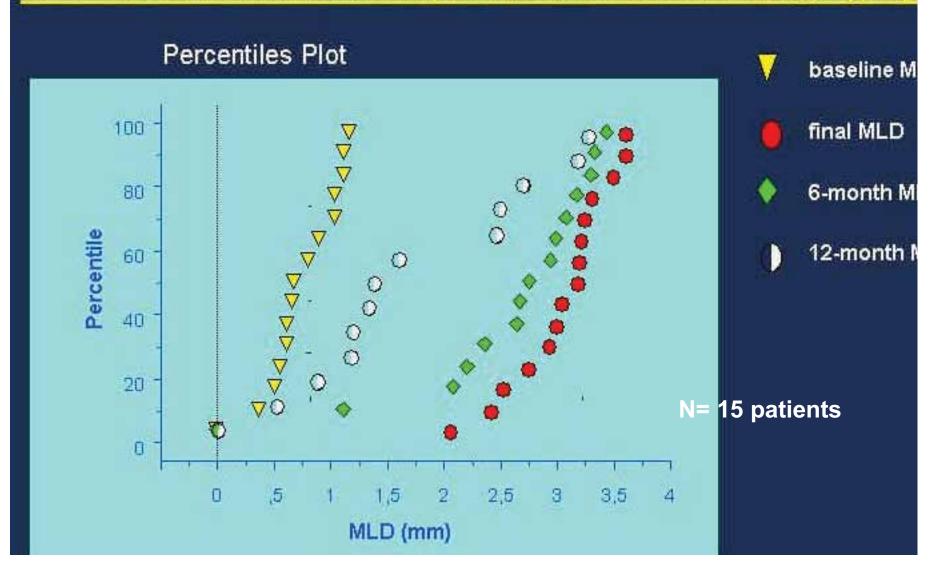
Patterns of In-stent Restenosis

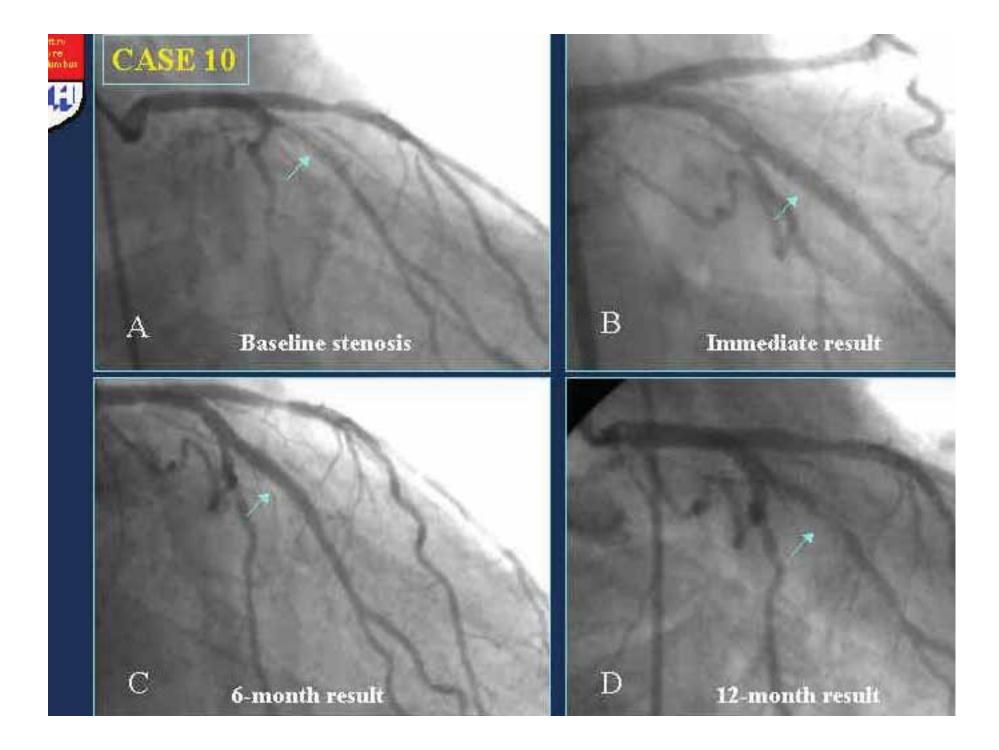
Focal	Brazil n=25	Netherlands n=16
Diffuse	10 (40%)	3 (19%)
	8 (32%)	4 (31%)
oliferative	7 (28%)	5 (31%)
al Occlusion	0 (0%)	3 (19%)

1-year Clinical Events

	Brazil N=25	Rotterdam N=16	Pooled N=41
eath)	0 (0%)	2 (12.5%)	2 (4.9%
	0 (0%)	1 (6.3%)	1 (2.4%
	0 (0%)	2 (12.5%)	2 (4.9%
Restenosis	1 (4%)	2 (12.5%)	3 (7.3%

First clinical experience with a paclitaxel-derivate elution polymer-stent system implantation for in-stent resteno immediate and long term clinical and angiographic out


Baseline Clinical Characteristics


Variable	N. (%)	Variable	N. (%)
Patients	15	1 vessel disease	6 (40)
Age (yrs)	58.8	2 vessel disease	4 (27)
Male sex	13 (86.6)	3 vessel disease	5 (33)
Family history	1/8	Prior MI	7 (46.6)
for CAD	5(30)	Prior CABG	5 (33)
Diabetes	5 (30)	Prior brachytherapy	2 (13)
Hyperchol.	14 (93.3)	IPIP	54.6 ±7.1
Hypertension	11 (73.3)	Asymptomatic	3 (20)
Current Smoke	1(6.6)	Stable	5 (30)
		Unstable	7 (46.6)

Paclitaxel (with Polymer) Stent to treat ISRS.

MLD Percentiles baseline, at 6 and 12 months angiograp

TAXUS III

Non-randomized, 2 Center Registry

- Patients = 28 with ISR treated with Taxus stents
- TVR = 6(21.4%) but 3 pts had no restenosis
- Restenosis = 4 (16%)

» Tanabe et al Circulation 2003; 107:559-564

US Clinical and Angiographic follow

TAXUS III - ISR

Enrolled from

28 Target Lesions Treated

Follow-Up

Clinical: 30 Day ~ 28 (100%)

6 month ~ 28 (100%)

Angiographic: 25 (89.3%)

Paired F/U* 21 (75%)

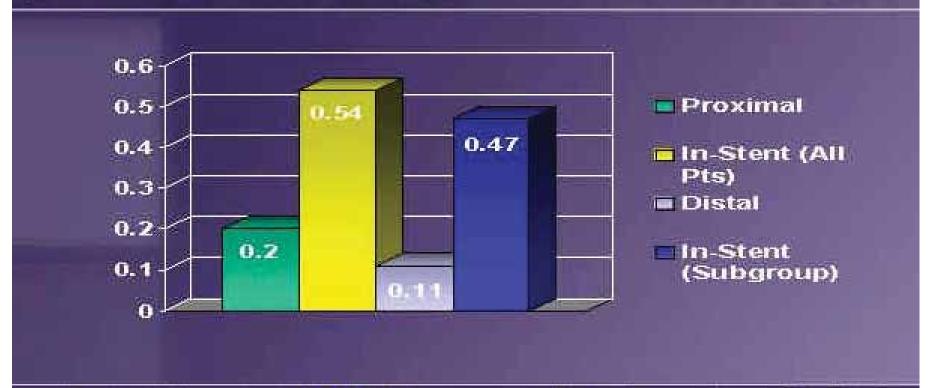
IVUS: 17 (60.7%)

Paired F/U* 17 (60.7%)

رزي Quantitative Coronary Angiograp ISR Classificat

Baseline Mehran Classification	n/%
IA (gap)	0 (0%)
IB (margin)	3 (10.7%)
IC (Focal)	6 (21.47%)
ID (Multifocal)	1 (3.67%)
ll (diffuse intrastent)	13 (46.4%)
III (proliferative)	4 (14.3%)
IV (total occlusion)	1 (3.6%)

ÚS

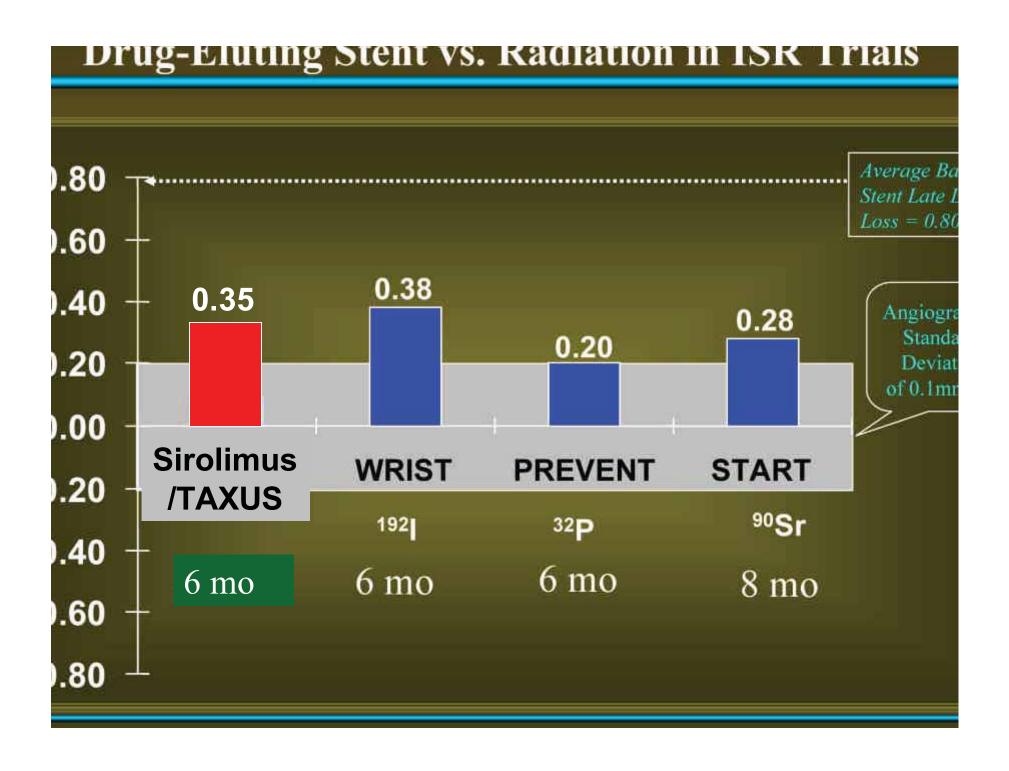

Major Adverse Cardiac Eve

	30 Day (n / %)	6 Month (n / %)	P-valu
eath	0	.0	NS
-Wave MI	0	0	NS
on Q-Wave MI	1 (3.6)	1 (3.6)	NS
LR	0	6 (21.4)	NS
ABG	0	1 (3.6)	NS
-Month MACE	0	8 (29)	NS

Stent Mismatch by Angiograp **Post** 6 months TAXUSNIRX Bare stent Restenosis within bare stented segment.

Late Lo

Proximal	In-Stent	Distal	In-Stent
	All Patients		Subgroup
0.20 <u>+</u> 0.40	0.54 ± 0.51	0.11 ± 0.33	0.47 ± 0.48


There is little data showing DES is more effective than brachytherapy in ISR (how many stents do we deliver to treat a 32mm ISR?)

Is multiple DES overlapping a problem?

Potentially

Brachytherapy vs Drug Eluting Stents for In stent Restenosis

	Radiation	DES
	> 1500	70
R	15-20%	0% vs 30+%
\mathbf{T}	1-2%	0% vs 20%
lge	Coverage	Longer stent
B Loss	some	problematic
	per case	per mm

DES vs Brachytherapy in ISR

Randomized trial of patients with ISR Include all comers, select patients that can be treated with both, keep registry of non-randomized (major side branch, long lesions requiring more than 2 stents)

Follow-up: cost, TLR, TVR and vessel failure

TAXUS-V ISR Features

- 88 pts with ISR of bare metal stents randomized to TAX
- s. any FDA approved beta brachytherapy system (Guid
- alileo™ or Novoste Beta-Cath™)
- rimary endpoint is 9-month ischemic TVR
- equential non-inferiority and superiority testing
- NI: iTVR = 20%, δ =10%, 10% attrition \Rightarrow 83% power
- Superiority: TVR 20% vs. 10%, 10% attrition ⇒ 80% power

CypherTM SISR

A Multicenter, Randomized Study of the Sirolimus-Eluting Bx Velocity® Balloon Expandable Stent vs. Intravascular Brachytherapy in the Treatment of Patients with In-Stent Restnotic Coronary Artery Lesions

Inclusion: Lesion length ≤ 45 mm

RVD ≥ 2.75 mm and ≤ 3.5 mm

P.I. Dr. Holmes

N= 400 patients
In-stent restenotic
coronary lesions

Randomized

CYPHER™
Stent
n = 266

Brachytherapy (gamma/beta)

n = 133

Endpoints 1^{ry}: TVF @ 9 months

Angiographic: all patients @ 6 mos.

IVUS: 5-7 center substudy @ 6 mos.

SISR Sneak Preview Scripps Clinic Recruitment = 38

- Patients at six month FU = 31
 - -DES = 22
 - Brachy = 9 (5 Galileo; 4 Gamma)
- TVR =

SISR Sneak Preview Scripps Clinic Recruitment = 38

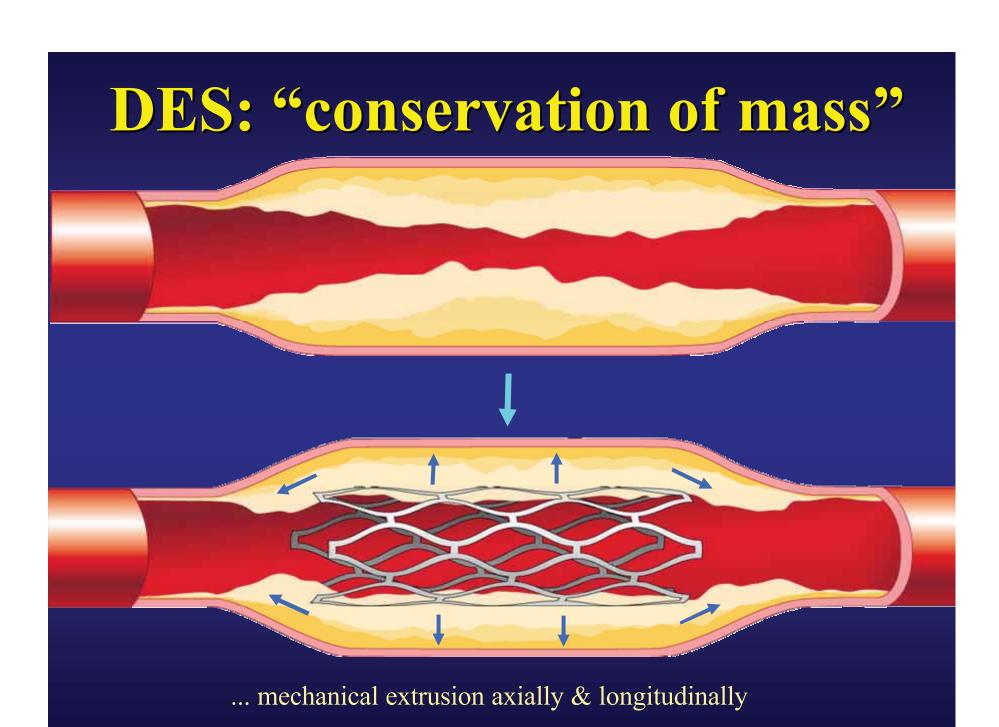
- Patients at six month FU = 31
 - -DES = 22
 - Brachy = 9 (5 Galileo; 4 Gamma)
- TVR
 - DES 5/22 (23%) vs Brachy 0/9 = 0; p = 0.2
 - 4/22 (18%) had TLR, 1/22 had new lesion distal to stent
- Repeat Restenosis
 - DES 5/22 (23%) vs Brachy 0/9 = 0; p = 0.2

In-Stent Restenosis Trials				
ISR-Feas	US ISR-Feas	TROPICAL	SISR	ISR-Barragan
Brazil & Netherlands	us	Europe	US	Europe
Two-center, non-randomized	Single center, non-randomized	Multicenter, (12 sites), non-randomized	Multicenter (26 sites)	Single-center, non-randomized
Feasibility trial for use of the CYPHERTM Stent in in-stent restenotic lesions	Feasibility trial for use of the CYPHER™ Stent in in-stent restenotic lesion, IDE study	Feasibility trial for the CYPHER™ Stent use in in-stent restenotic lesions	CYPHER™ Stent vs. intravascular brachytherapy for use in in-stent restenotic lesions	The use of the CYPHER™ Stent for in-stent restenosis
41	8	160	400	23
2-year follow-up at TCT 2003	Patients at 1-2 year visit	Enrollment started in Q4 2002	Enrollment started in Q1 2003	8-month data at ACC 2003

DES vs XRT: Clinical Problems

- BMS in-stent restenosis
 - All in-stent
 - DES and XRT can both be effective, XRT may be more effective
 - Late outcome of DES less known
 - Economics, side branch, ostial, delivery
 - Significant out-of-stent restenosis
 - DES to achieve better acute result
 - Which DES?
 - Not known
- Failured brachytherapy
 - Higher risk, avoid thrombosis
 - Which DES?
 - Not known
- DES in-stent restenosis
 - POBA for focal lesion
 - DES for missed lesions
 - Brachytherapy for diffuse disease

Only Commercially Available System Left!!



Roles of Brachytherapy vs DES in ISR

- In-Stent Restenosis (BMS)
 - Brachytherapy for majority of patients
 - DES for edge stenosis or analysis segment restenosis
- In-Stent Restenosis (Vein Grafts)
 - Brachytherapy
- In-Stent Restenosis (DES)
 - POBA for focal lesion
 - DES for missed lesions
 - Brachytherapy for diffuse disease

What are the potential problems with treating ISF with DES?

- Plaque Extrusion
- Long stent in long ISR
- Dosage enough ?
- Multiple stents

nould We Replace Brachytherapy with DES?

Pros and Cons

0

- Brachytherapy adds an extra 30 minutes to the procedure (at least!)
- DES is a MORE LOCAL treatment!
- Re-radiation may be risky…therefore, you only get one shot so why not start with a DES?
- Late results of brachytherapy show significant late restenosis

Con

- DES may not be as effective as Brachytherapy
- DES is usually more expensive than brachytherapy
- Late results of DES for ISR are unknown!

Will Late Failure also be a Problem for Drug Eluting stents?

- No: -DES are more effective
 - -DES are used for de novo disease...less aggressive
- Yes: -Some pts are resistant to "cell cycle inhibitors"

 (i.e. SECURE)
 - -All anti-proliferative treatments will eventually fail!

DES ISR Studies

What needs to be improved...

- Safety and efficacy in most complex lesion and patient cohorts...VBT failures, CTO lesions, "ultra-diffuse" lesions (> 45 mm length)
- What is the optimal adjunctive pharmacotherapy?
 ...bivalirudin vs. heparin, + Ilb/Illa platelet inhibitors, duration of Plavix therapy (3 mos, 6 mos, 12 mos, or lifelong)
- Can you use alternative (different) DES systems after DES failure? (Sirolimus \(\bigcup \) Paclitaxel)
- Optimal timing, sequence, and relative safety/efficacy of DES vs. VBT (esp. long-term safety of DES after failed VBT)...if DES = VBT, which Rx first?

DES ISR Studies

What needs to be improved...

- The "truth" about late "catch-up" (delayed restenosis)... which patients, how severe, possible solutions... obviously, there must be more rigorous late FU in these patients
- And of course, the economic impact can be prohibitive when multiple stents are required (probably still cost-effective vs. alternatives)