Initial Experience of

Results of FIM Study

Etsuo Tsuchikane, MD, PhD

Disclosure

Within the past 12 months, the presenter or their spouse/partner have had a financial interest/arrangement or affiliation with the organizations listed below.

Physician Name

Etsuo Tsuchikane, MD, PhD

Company/Relationship

Boston Scientific, Japan Consultant Asahi Intecc, Japan Consultant

PlasmaWire System

RetroVascular, Inc.

- The PlasmaWire System consists of an RF Generator (RFG), Connector Cable and two 0.014" RF wires (PlasmaWire).
- Two, independently steerable PlasmaWires act as electrodes to form a bipolar arrangement for precise directional ablation.
- RF energy is delivered to the PlasmaWire in "packets" of short pulses to minimize tissue injury while creating plasma to facilitate channel creation between the two wire tips.
- Created channel allows for subsequent CTO crossing and treatment with DES.

RF Generator (RFG)

- Each "packet" is triggered by an ECG Monitor input based on detection of patient's ECG R-wave.
- RFG measures and monitors signals in real-time and detects channel creation using a proprietary algorithm and automatically terminates RF cycle to minimize delivered RF energy.
- Maximum RF cycle set at 5 sec.

PlasmaWire

- Next generation Gaia NEXT wire technology offers handling and performance characteristics similar to Gaia 2nd 0.014" diameter guidewires.
- Unique polymer structure provides insulation to ensure safe delivery of RF energy to treatment site for creation of a channel in CTO.

Bench Testing

Plasma ablation in hotdog

Clear channel created without charring (electrodes offset by 2 mm) Plasma ablation in bone (calcium)

Clear channel created without charring

Chronic Animal Study

Intimal channel created with minimal RF injury

channel by plasma ablation

FIM of PlasmaWire

Subintimal sectioning indicated no thermal injury

Antegrade wire in subintima

Retrograde wire in intima

Created channel between antegrade and retrograde wire.

channel by plasma ablation

FIM cases in SCVC, NHC and THC

FIM number	site	date	CASE	Patient ID	age	sex	Targeted CTO (intended ablation site)	Intended use of PlasmaWire
FIM-1	SCVC	Oct. 21	KN	70412581	69	Μ	mid-RCA (distal)	Ant + Retro
FIM-2	SCVC	Oct. 21	FK	70424407	56	Μ	mid-RCA (distal bifur.)	Ant + Ant
FIM-3	SCVC	Oct. 22	YS	70459383	68	Μ	prox-LAD (prox)	Ant + Ant
FIM-4	SCVC	Oct. 22	KB	70453348	69	Μ	prox-RCA (prox)	Ant + Retro
FIM-5	NHC	Oct. 27	HS	00332239	64	Μ	mid-RCA (mid)	Ant + Retro
FIM-6	THC	Oct. 28	KY	691291	51	Μ	distal-RCA (distal)	Ant + Retro
FIM-7	SCVC	Dec. 2	TH	70471802	89	Μ	mid-RCA (mid)	Ant + Retro

localized plasma ablation

Ablation of proximal fibrous cap

Recanalization with CTO exit

Antegrade re-entry

Retrograde re-entry with or w/o calcium ablation

localized

Ablation of proximal fibrous cap

localized plasma ablation

Recanalization with CTO exit

Aged stent proliferative occlusion (PS, S670)

CTO exit at distal bifurcation

FIM-2 (planning)

	target vessel	contralateral			
Guiding (planned)	Hyperion AL 1 with side hole 8Fr	Hyperion SPB 3.75 no side hole 6 Fr			
Access route	Rt femoral	Lt femoral			
Planned fashion of Plasma wire use	Antegrade + Antegrade				
Retrograde route	not planned				
CTO wires for preparation	Gaia	not planned			

1. After stent crossing, access to CTO exit should be careful to avoid subintimal tracking with Gaia followed by Corsair Pro (beyond stents).

2. Two catheters (Corsair pro + Caravel) are used for exchanging with PlasmaWires.

3. PlasmaWires must be carefully located face-to-face at CTO exit as shown in the left figure.

ablation point (LAO)

ablation point (AP cra)

FIM-2 (results) A First Patient with Electrical Re-entry

During ablation (AP cra)

Contralateral injection+aspiration from Corsair tip (LAO)

Gap: 1.22 mm (QCA) Created channel (re-entry) Corsair tip Total ablation duration: 0.40 sec Total energy delivered: 0.42 J

A First Patient with Electrical Re-entry

IVUS (pull-back image from PD br)

Angiogram just after IVUS (LAO)

Summary of FIM-2

- The first case in which electric re-entry was achieved.
- Electrical channeling was successfully performed in antegradeantegrade fashion at RCA distal bifurcation without PVCs, thrombosis, and vessel injury.
- IVUS clarified how the plasma ablation created the connecting channel (re-entry) at bifurcation. When activated, the walls sandwiched between both PlasmaWires were ablated, and then a channel between the false lumen in PD branch and the true lumen was created as a result.

localized plasma ablation

Antegrade re-entry

CTO exit is not visualized.

Selective injection in conus br is needed to visualize the CTO exit.

FIM-3 (planning)

	target vessel	contralateral			
Guiding (planned)	Hyperion SPB 3.75 with side hole 8Fr	Hyperion JR no side hole 6 Fr			
Access route	Rt femoral	Lt femoral			
Planned fashion of Plasma wire use	Antegrade + Antegrade				
Retrograde route	not planned (distal PD septal br for backup)				
CTO wires for preparation	Step-up from Gaia	not planned			
Procedure for preparation	1. Calcium pipe is negotiated by Gaia.				

- 2. PlasmaWires exchange are done inside calcium pipe.
- 3. Super-selective injection in conus branch is mandatory.
- 4. The ablation site is CTO exit at the end of calcium.

Pre-PCI (simultaneous injection using super-selective injection through the conus br)

After the false channel was created, plasma ablation was attempted in the false lumen

beside the proximal end of distal true lumen.

The large false lumen was created below the distal true lumen by Gaia 2nd.

Ablation site (antegrade+antegrade)

After the false channel was created, plasma ablation was attempted in the false lumen beside the proximal end of distal true lumen.

Position for ablation (Both PlasmaWires are positioned in false lumen so that the distal true lumen is being collapsed.) CONSTRUCTION OF THE

(gap: 1.40 mm).

Total ablation duration: **1.8 sec** Total energy delivered: **1.06** J

During ablation (antegrade+antegrade)

A Second Patient with Electrical Re-entry

Collateral injection immediately after activation showed the restored true lumen and shift of PlasmaWires from the false lumen to the true lumen.

After activation, PlasmaWire was directly advanced to the distal true lumen because the tip of wire was confirmed to be automatically shifted to the true lumen by

After connecting channel was visualized by tip injection, the channel was recrossed with a very floppy wire (SUOH03). Then IVUS was done to check the channel.

IVUS findings of connecting channel created by plasma ablation

Summary of FIM-3

- The second case in which electrical re-entry was achieved.
- Electrical channeling was successfully done in antegradeantegrade fashion though both PlasmaWires were positioned parallel to each other beside the distal true lumen.
- Connecting channel (re-entry) between the false and the distal true lumen was created. Subsequently, a PlasmaWire was automatically shifted to the distal true lumen, which confirmed channel creation indirectly.
- Thrombosis and vessel injury was not seen on angiogram and IVUS.

localized plasma ablation

Recanalization with

Antegrade re-entry

Retrograde re-entry with or w/o calcium ablation

Retrograde re-entry with or w/o calcium ablation

FIM-7 (previous attempt)

FIM-7 (previous attempt)

FIM-7 (previous attempt)

CTO segment seems to be totally occupied by calcium based on MSCT.

FIM-7 (planning)

	target vessel	contralateral			
Guiding (planned)	Hyperion AL 1 with side hole 8Fr	Hyperion SPB 3.75 with side hole 7 Fr			
Access route	Rt femoral	Lt femoral			
Planned fashion of PlasmaWire use	Antegrade + Retrograde				
Retrograde route (planned)	septal channel				
CTO wires for preparation	Miracle 3G	Ultimate 3G			
Procedure for preparation	 Antegrade Corsair is advanced to CTO entry and retrograde Caravel is advanced to CTO exit for delivering PlasmaWires. 				

1st Activation no channel created

Gap: 3.24 mm Total ablation duration: 5 sec Total energy delivered: 4.24 J no PVC 2nd Activation no channel created

Gap: 2.62 mm Total ablation duration: 5 sec Total energy delivered: 4.25 J no PVC

3rd Activation Channel created

Gap: 0.92 mm Total ablation duration: 1.2 sec Total energy delivered: 1.57 J no PVC 4th Activation Channel created

Gap: 0.43 mm Total ablation duration: 0.92 Total energy delivered: 0.80 J no PVC

After channeling, the antegrade PlasmaWire could be advanced to distal step by step so as to get close to the retrograde PlasmaWire.

5th Activation Channel created

Then, the retrograde PlasmaWire was pulled back 1-2 mm. So, activation was carried out at the distal point.

Gap: 1.75 mm Total ablation duration: 0.67 sec Total energy delivered: 1.10 J no PVC After 5th activation, the antegrade PlasmaWire was exchanged to XTR. Then, the antegrade XTR wire smoothly passed through the created channel.

After wire crossing, no catheter could pass through regardless of balloon anchoring.

After wire exchange for a Rotawire with bare wire technique, rotablation was done using 1.25 mm burr.

Pullback IVUS image after rotablation with 1.25 mm burr ablation site at 3rd and 4th activation ablation site at 5th activation

Summary of FIM-7

- Historically, this is the first case in which a channel is created in a heavily calcified coronary CTO using a new device in human.
- Channel creation in a dense calcium could be carried out using PlasmaWire without any complications (no PVCs, no thrombosis, no vessel injury).

Conclusions

- PlasmaWire has a potential as a novel recanalization tool of coronary CTOs.
- FIM study results warrant further clinical evaluations.