Function-guided Bifurcation PCI

Bon-Kwon Koo, MD, PhD

Seoul National University Hospital, Seoul, Korea

SNUH Seoul National University Hospital Cardiovascular Center

The most important prognostic factor is "Presence of Ischemia"!

Iskander, et al. JACC 1998

SNUH³ Seoul National University Hospital Cardiovascular Center

Determinants of Myocardial ischemia : Anatomy vs. Ischemia

- Stenosis severity by CT, angiography, intravascular US,
- Extent of the perfusion territory
- Presence of myocardial infarction
- Myocardial blood flow including collaterals
- Microvascular function

→ Functional or Physiologic evaluation

• Invasive functional test in a cath lab with very high spatial resolution

"Fractional Flow Reserve (FFR)"

SNUH® Seoul National University Hospital Cardiovascular Center

Why "functional evaluation" in bifurcation PCI?

Pitfalls of anatomical evaluation

- Angiography
 - Single directional assessment
 - Variability in stenosis assessment
 - No validated criteria for intervention
 - Not physiologic

• IVUS/OCT

- Difficult to perform in tight stenosis
- No validated criteria for intervention
- Not physiologic

Uniqueness of side branch lesions

- Various size, various amount of myocardium
- Side branch stenosis is **unique and complex**
 - Underlying plaque → Eccentric
 - Remodeling → Negative remodeling
 - Complex mechanisms of side branch jailing
 Carina shift, plaque shift, stent struts, thrombus.....

Koo BK & de Bruyne B, Eurointervention 2010

Pre-intervention

- After main branch stent implantation
- After side branch balloon angioplasty
- After side branch stenting

Why FFR?

Diagnostic accuracy of anatomic parameters in pure SB ostial lesions

Koh JS, Koo BK, et al., JACC Intv, 2012

Pitfalls of Side branch FFR: Influence of MB stenosis

Anatomical & functional Medina 0,0,1 lesion?

Pullback pressure tracing

SNUH® Seoul National University Hospital Cardiovascular Center

- FFR <0.75 does not always mean the clinical relevance of that SB stenosis. FFR should be measured in large SB.
- When SB FFR is measured, the influence of main branch stenosis should always be considered (Don't forget the pullback pressure tracing!).
- Pre-intervention SB FFR is usually not helpful to predict the jailed SB FFR.

Pre-intervention

Pre-intervention

- After main branch stent implantation
- After side branch balloon angioplasty
- After side branch stenting

In Jailed side branch lesions, Angiographic severity ≠ Presence of ischemia

Anatomical severity **+** Functional significance

Estimation of "functional significance" in jailed SB lesions

Shin DH, Koo BK, et al. Cath Cardiovasc Interv 2011

Anatomical severity + Functional significance

FFR vs. % diameter stenosis in Jailed side branches

% diameter stenosis Kumsars I, et al. Eurointervention 2011

Anatomical severity + Functional significance

FFR vs. OCT lumen area in Jailed side branches

OCT 2.05mm² Vs. FFR 0.80

Ha J, Kim JS, et al. JACC Img 2013, in press

SNUH Secul National University Hospital Cardiovascular Center

FFR in all jailed side branches?

SNUH® Seoul National University Hospital Cardiovascular Center

After main branch stent implantation

- SB FFR is useful in short ostial SB lesions.
- SB FFR is generally not recommended in very complex SB lesions (severe tortuosity, heavy calcification, diffuse multiple stenosis.....).
- The pressure wire should not be jailed by a MB stent.
- FFR 0.75 seems to be an appropriate criteria for jailed SB intervention considering the clinical relevance of SB and complexity of procedures.

- Pre-intervention
- After main branch stent in

- After side branch balloon angioplasty
- After side branch stenting

Angiographic vs. FFR changes during PCI

Functional outcome of Jailed side branches

SNUH SB FFR registry

Nordic Baltic Bifurcation III : SB FFR substudy

Koo BK, et al Eur Heart J 2009

Kumsars I, et al. Eurointervention 2011

FFR after complex Left main stenting

Functionally complete revascularization

FFR after complex side branch stenting

DK crush vs. Provisional

	DK Group	1-Stent Group	P Value
FFR preprocedure			
MB FFR at baseline	0.83 ± 0.15	0.89 ± 0.13	0.109
SB FFR at baseline	0.84 ± 0.15	0.91 ± 0.12	0.100
MB FFR at hyperemia	0.76 ± 0.15	0.83 ± 0.10	0.029
SB FFR at hyperemia	0.76 ± 0.15	0.83 ± 0.16	0.103
FFR postprocedure			
MB FFR at baseline	0.96 ± 0.02	0.95 ± 0.03	0.376
SB FFR at baseline	0.97 ± 0.02	0.96 ± 0.03	0.043
MB FFR at hyperemia	0.92 ± 0.04	0.92 ± 0.05	0.581
SB FFR at hyperemia	0.94 ± 0.03	0.90 ± 0.08	0.028

In cases of crush stenting Pre- and Post- final kissing balloon

	Pre-KBA FFR		Post-KBA FFR
	0.90		0.96
	0.96		1.00
	0.95		0.95
	0.96		0.96
	0.92		1.00
	0.95		0.98
	0.94		0.96
	1.00		1.00
	0.94		0.94
	0.88		0.94
	0.88		0.94
	0.97		1.00
	0.94 ±0.04		0.97 ±0.03

Ye F, et al. J Interven Cardiol 2010

Lee BK, et al. Clinical Cardiol 2010

After side branch angioplasty

- Functional outcomes of FFR-guided SB intervention is good regardless of residual stenosis.
- SB FFR is not recommended in case of slow flow or severe dissection.

After side branch stenting

- FFR is useful to detect the residual ischemia.
- However, high FFR does not always guarantee the excellent outcomes of complex intervention for bifurcation lesions.

FFR during Bifurcation PCI: When and How?

	FFR is useful	FFR is not recommended
Pre-intervention	 To assess the functional significance of main branch To assess the functional significance in pure ostial SB stenosis 	 Small side branch Complex bifurcation (long diffuse, calcified, total occlusion) To determine functional significance of SB when there is significant MB stenosis SB FFR to predict the functional significance of jailed SB
Post-MB stenting	 To assess the functional significance of jailed SB and to predict their outcomes 	 Small SB Long diffuse, calcified side branch SB slow flow
Post-SB angioplasty	 To assess SB procedural success and to predict the outcomes after KBI (non-left main) 	SB slow flowSB dissection
Post-SB stenting	• To evaluate residual ischemia	 To predict procedural outcomes of complex two stenting