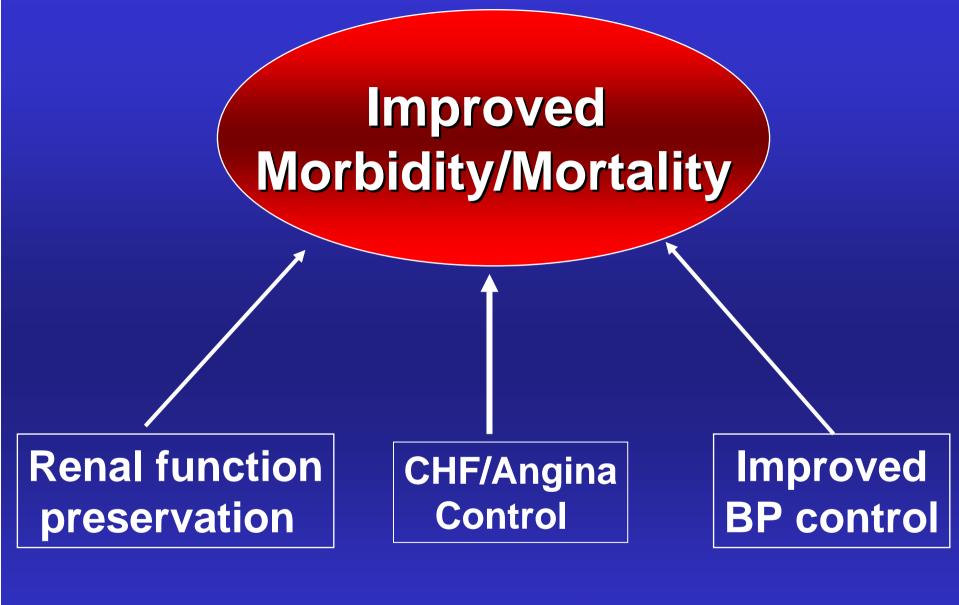
Renal Stent Trials: ASPIRE II, RESIST & CORAL Trials

Krishna Rocha-Singh, M.D., F.A.C.C., F.S.C.A.I. Director, Vascular Medicine Program

Prairie Heart Institute Springfield, IL



The Challenges of Renal Stenting:

- No U.S. FDA approved <u>clinical</u> indication
- Angiographic indication only: Failed/suboptimal PTA

This fact reflects:

- Diverse population w/ variety of indications (HTN, renal insufficiency, cardiac disturbances)
- Difficult 'hard' surrogate end-points

Surrogate End-points

U.S. Renal PMA Stent Trials

- Palmaz, (Cordis J&J): ASPIRE I Pilot Trial (Completed)
- Palmaz, (Cordis J&J): ASPIRE II (Completed, in press)
- Genesis, (Cordis J&J): GREAT Trial (completed) and RESIST Trial (in progress)
- Herculink, (Guidant): HERMES Trial (Completed, not published)
- Herculink Plus, (Guidant): ------
- AVE Bridge Stent (Medtronic): SOAR Trial (completed, not published)
- IntraStent, (eV3) : -----
- *Abbott*: -----
- Express stent, (Boston Scientific): Renaissance Trial (Enrollment complete, results pending)

ASPIRE 2 Study Design

- Design: Prospective, non-randomized study of 208 patients at 23 US sites
- Primary endpoint: 9 mo. restenosis of the PALMAZ stent after failed PTRA
- Secondary endpoints:
 - MACE
 - Device or procedure related death
 - Procedure related Q-wave MI
 - Target lesion revascularization
 - Embolic events (defined as causing end-organ damage or loss of renal function)
- Effect on control of blood pressure
- Effect on renal function
 - As defined by a rise in serum creatinine

ASPIRE 2 Results

Lesion Success (% DS < 50%)	99.6% (251/252)	
Acute Procedure Success	80.2% (182/227)	
(%DS <30% & gradient <5mmHg)		
Primary Patency	81.0% (149/184)	
(QA/duplex ultrasound @ 9 mo.)		
9-Month Restenosis Rate	17.4% (32/184)	
(by duplex ultrasound & angiography)		9 mo.
Target Lesion Free at 270 days	96.7%	9 mo.
(K-M Estimate, Lesion Based)		
Target Lesion Free at 720 days	85.9%	
(K-M Estimate, Lesion Based)		
Rocha-Singh, et al. JACC '05, in press		

Effect on Hypertension: Systolic Blood Pressure

Visit	Ν	Mean ± SD	P Value	
Baseline	208	167.6 ± 25.2		
Discharge	202	147.6 ± 22.3	< 0.001	
1 month	196	151.5 ± 24.4	< 0.001	
6 month	182	149.2 ± 22.9	< 0.001	
9 month	178	149.5 ± 23.8	< 0.001	<u>N.B.</u>
24 month	158	149.3 ± 25.3	< 0.001	N.B.

Effect on Hypertension: Diastolic Blood Pressure

Visit	Ν	Mean ± SD	<i>p</i> -value	
Baseline	208	81.53 ± 13.1		
Discharge	202	70.88 ± 12.1	< 0.001	
1 month	196	75.25 ± 11.4	< 0.001	
6 month	182	76.85 ± 11.0	< 0.001	
9 month	178	77.34 ± 12.1	< 0.001	N.B.
24 month	158	76.87 ± 11.9	< 0.001	N.B.

Effect on Renal Function Serum Creatinine

Patients with <u>Abnormal</u> Renal Function Only (Baseline creatinine > 1.5 mg/dl)

Visit	Ν	Mean±SD	P-value
Baseline	74	1.94±0.39	
1 month	64	1.89±0.72	0.64
6 month	60	1.98±0.66	0.49
9 month	63	1.87±0.58	0.53
24 month	53	1.93±0.71	0.69

ASPIRE II Conclusions

- 17% restenosis rate is comparable to rates in literature
 - Extremely favorable compared to PTRA alone
 - Comparable to surgical revascularization
- Blood Pressure response showed significant reductions in blood pressure at 9 and 24 months
 - Systolic:
 - 18.1 point improvement at 9 mo. (10.8% decrease)
 - 18.3 point improvement at 24 mo. (10.9% decrease)
 - Diastolic:
 - 4.2 point improvement at 9 mo. (5.1% decrease)
 - 4.7 point improvement at 24 mo. (5.7% decrease)

ASPIRE II Conclusions (cont'd)

- No significant changes in serum creatinine levels at 9-month follow-up
 - No change in subset who were abnormal at baseline
 - No significant change when all patients are considered
- BP/Antihypertensive medication response showed 45% of patients were *cured* or *improved* at both 9- and 24-month marks 55% of patients experienced no BP improvement

Outcomes Of Renal Revascularization In Chronic Azotemic Renovascular Disease **Deterioration of GFR** Improved GFR Stable GFR 25 - 30% 45 - 50% 20 - 25% Progressive No Further Loss Restoration **Parenchymal Injury** of Blood Flow of Blood Flow Concurrent Diseases Reversible Stable Tissue **Parenchymal Fibrosis** Injury Reperfusion Injury

Renal Stent Related Complications: ASPIRE II

Major Adverse Events – 9 mos.	10.6%
Stent Thrombosis	1.8%
Significant Embolic Event	5.3%
Target Lesion Revascularization	4.8%
Access Site Complication	4.8%
Worsening Renal Function	3.8%
Complication Requiring Surgery	2.1%
Complication Requiring Nephrectomy	0.0%
30-day Mortality	0.5%
Rosenfield '00	

Atheroembolization

- Material impacts in small arteries, arterioles and glomeruli
- Intimal thickening and formation of giant cells
- Distal micro-infarcts and ischemic atrophy
- Becomes clinically evident
 1 day to 2 months after
 the procedure

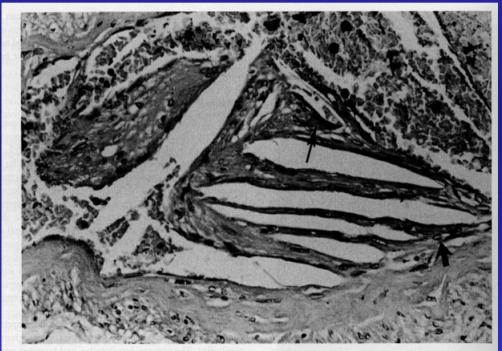
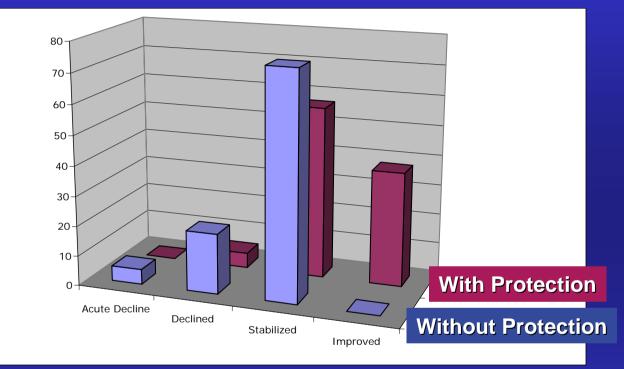
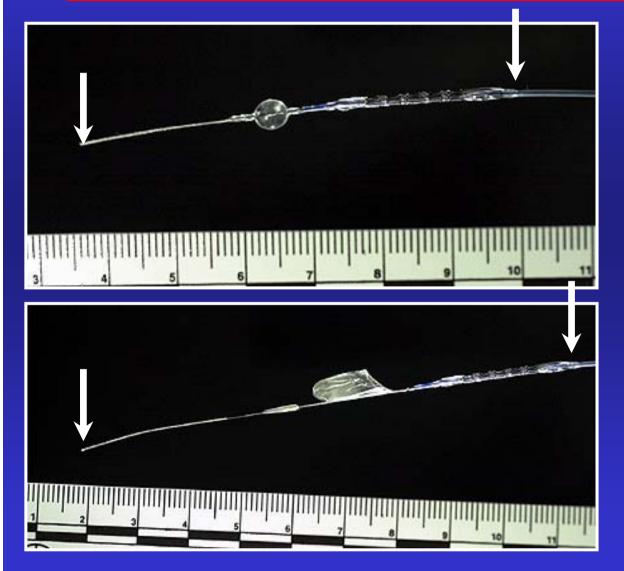



FIG. 70-11. Light microscopy illustrates the needle-shaped clefts of atheroemboli in a renal arteriole Foreign-body giant cells (arrows) surround the cholesterol clefts.

From Schrier, 7th ed.

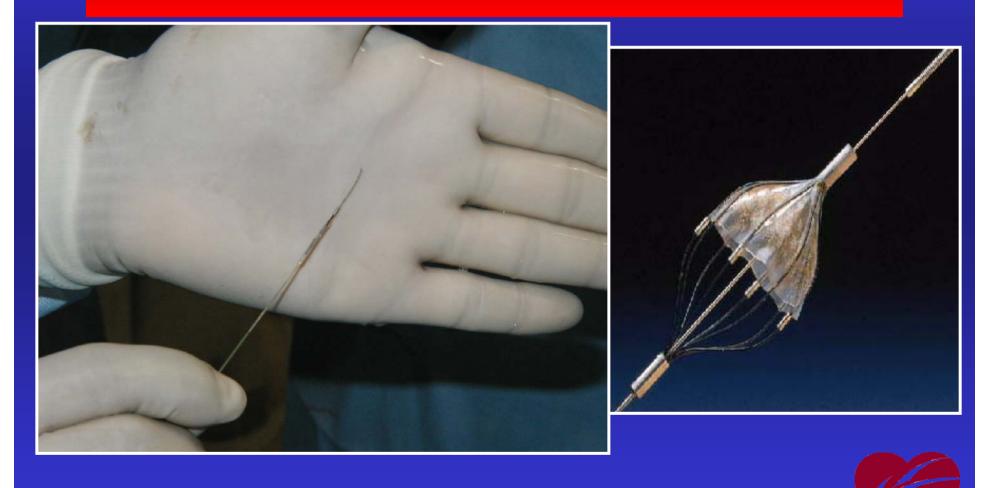
Atheroembolic Protection: Holden et. al.



- Retrospective review of patients prior to and with embolic protection
 - 20 before, and 37 after
- Mean follow up 1 year

JVS 2003; 38:962-968

Commercially Available DP Technology



PercuSurge™


FilterWire EX[™]

AngioGuard™ Short-tip

RESIST Trial

A Prospective Randomized Multicenter Study Comparing the Safety & Efficacy of Renal Artery Stenting with & without the use of a Distal Protection Device (Angioguard) and with & without the use of Reopro.

- Multi-center, prospective, randomized, feasibility Trial
- 100 patients stented with PALMAZ® GENESIS® Stent
- 50 patients randomized to stent + ANGIOGUARD[™] and 50 patients to stent alone
- 50 patients randomized to receive Reopro
- Patient follow-up at 1 and 6 months
- Enrollment at 66 patients to date

Primary Aims of the RESIST Study:

- 1. Determine whether embolic protection with the Angioguard XP Short Tip device during stent implant results in:
 - a. Retrieval of atheroembolic material...amount
 - b. Improved renal function at 1 month post-procedure
 - c. Evidence of decreased injury in the kidney(s)
 - d. Is it safe?

Primary Aims of RESIST Study

- 2. Determine whether the inhibition with ReoPro results in:
 - a. Improved renal function 1 month post-procedure.
 b. Decreases evidence of injury in the kidney(s)
 c. Is it safe?

RESIST Follow-up:

1 month visit:

- a. Blood pressure assessment
- b. Creatinine assessment with BMP
- c. Renal function assessment with DTPA scan to assess GFR and Iohexal clearance
- d. Hypertensive medication assessment

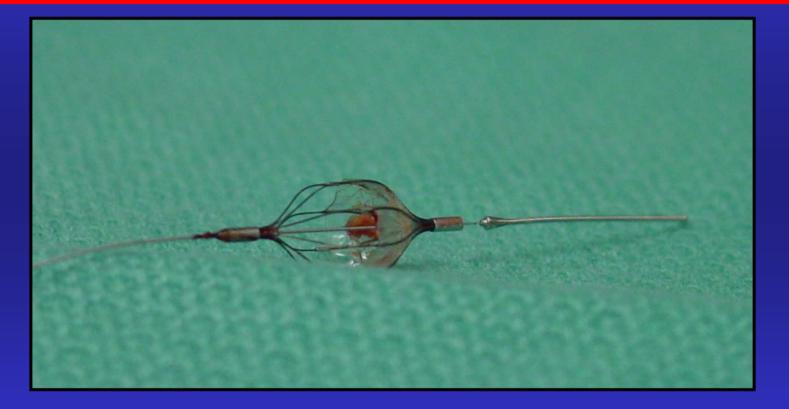
6 month visit:

- a. Blood pressure assessment
- b. Creatinine assessment with BMP
- c. Hypertensive medication assessment

Strategies to Avoid Distal Embolization

- Patient selection: 'High risk' cohort
 - Elderly Renal dysfunction, bilateral disease Diseased aorta

Appropriate Anatomy

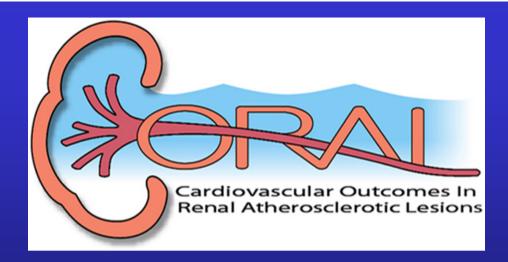

Active Protection: Technical Points

Atraumatic catheter intubation: Use 'No touch' Choice of the device:

- Small french diagnostic and guiding catheters
- 0.014" guide wires, balloons, short stents...
- Coronary devices & techniques

Passive Protection: DP Devices

AngioGuard-XP Wire



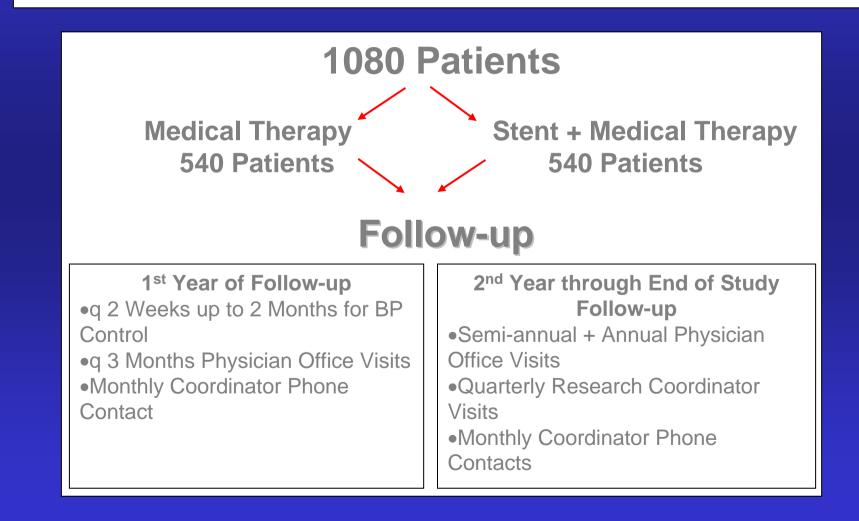
CORAL is designed to test a <u>singular</u> hypothesis:

Does 'best medical therapy' combined with stenting of hemodynamically-significant renal artery stenoses in patients with systolic hypertension reduce the incidence of adverse cardiovascular and renal events compared with 'best medical therapy' alone.

Prospective, multicenter, two armed, randomized, un-blinded trial

Interventions

1. Optimal Medical Therapy


- All receive Candesartan, Angiotensin Receptor Blocker
- LDL, BP and HbA1c to guideline
- 2. OMT plus Stent Revascularization
 - AngioGuard embolic protection
 - Genesis balloon expandable stent

Randomization and Follow-up

RANDOMIZATION OF ALL ANGIOGRAPHICALLY ELIGIBLE PATIENTS

•Performed in angiography lab immediately after diagnostic angiogram confirms eligibility

Primary Outcome:

- Survival free from a composite of clinically important Cardiovascular and Renal Adverse Events: Hard End-points
 - Cardiovascular or Renal Death
 - Stroke
 - Myocardial Infarction
 - Hospitalization from CHF
 - Progressive Renal Insufficiency
 - Doubling of Cr from baseline, persisting on 2 core lab draws separated by 60 days
 - Renal Replacement Therapy (HD)

Adjudicated by an independent CEC

OMT vs OMT plus Protected Stenting

Why is Optimal Medical Therapy critical?

- If stenting wins, it wins against the best.
- If blood pressure or renal function benefits emerge, it isn't because of poor medical therapy!
 - OMT needs to be balanced for effect of stenting to be evaluable.
- <u>Every</u> patient in this trial will be treated well.

Why is "State-of theart" intervention critical?

- Comparison should be best vs best
- Interventional committee will continue to review "best" interventional care
- Results should be relevant in 2010 and beyond

Optimal Medical Therapy

Required Therapies

- BP to target
 - ARB (Candesartan) based
 - <140/90
 - <130/80 with DM
- LDL to goal
 - Currently <100 mg/dl</p>
- Diabetes Management
 - HbA1c to target, <7</p>
- Smoking Cessation

<u>Monitoring</u>

- Compliance
 - Candesartan
- BP Quarterly
- LDL annually
- HbA1c annually
- Document smoking status and education

Secondary Endpoints

All Cause Mortality

- Subgroup Interactions:
- Men vs Women
- African American vs non-African American
- Diabetes vs non-Diabetes Mellitus
- Global vs Partial Renal Ischemia
- Longitudinal Kidney Function (1/Cr)
- Systolic Blood Pressure
- Durability of Renal Artery Patency
- Renal Resistive Index: Preservation of Microvascular Renal Function
- Correlation between Stenosis Severity and Kidney Function (1/Cr)
- Quality of Life
- Cost Effectiveness

CORAL Population

<u>Points of Emphasis:</u>

- 1. Enrollment decision based on *clinical*, not anatomic criteria.
- 2. If patients with severe stenoses or global ischemia are excluded, no inference can be made.
- 3. As a federally funded project, inclusion of women and minorities is critical for generalizability

So, in the next 5 years:

- Clinical indications for medical v. percutaneous intervention will be better defined
- Angiographic v. Duplex doppler restenosis rates will be known
- Impact of medical therapy v. renal intervention on 'hard end-points' (death, MI/CVA, BP control & ESRD) will be determined