The 10th Anniversary, Interventional Vascular Therapeutics

"ANGIOPLASTY SUMMIT 2005"
TCT ASIA PACIFIC

Transcatheter Closure of Acute Myocardial Infarction VSD

Dr. Mullasari S Ajit Senior Consultant Cardiologist MADRAS MEDICAL MISSION CHENNAI, INDIA

Post Infarction VSD

- Uncommon (incidence:0.2%) <u>yet</u> <u>fatal</u> complication of Acute MI (commonly seen in AWMI).
- Anatomically different from congenital VSD
 - rims of the defect are smooth
 - easy device closure
- Extensive tissue loss causing septal rupture indicates <u>large area of necrotic</u> myocardium

Post Infarction VSD

- Hemodynamic compromise seen even before full extent of rupture is reached; increases in setting of myocardial dysfunction
- Thrombolysis → myocardial hemorrhage → may accelerate development of VSD

- 61 yr old male, diabetic, hypertensive,
- AWMI, Thrombolysed
- Developed CCF after 24 hours.
- Echo: 8-9mm muscular VSD, akinetic distal septum,
 Moderately severe LV dysfunction.

MY FIRST THOUGHT → Medical Management

BUT

Patient continued to be in heart failure 2 weeks

post – MI

Hence successful device closure of VSD carried out using

10 mm Amplatzer Muscular Occluder

Trans Catheter Device Closure (TCC) of Post-Infarction VSD (PIVSD)

- Under GA, RFA, RFV, LFA and Right IJV cannulated.
- TEE done to profile & size the VSD.
- VSD crossed via *retrograde* arterial approach; Exchange wire which was placed in the RPA snared using the Amplatz Goose–neck snare and placed in the RIJV.

Trans Catheter Device Closure (TCC) of Post-Infarction VSD (PIVSD)

- A 9F long sheath is then advanced across the VSD from RIJV and the device introduced; the distal disc in the LV side is deployed first
- The RV arm released after confirmation of adequate positioning

Apical
Muscular
VSD

J Exchange wire is snared using Amplatz Goose neck snare

Snaring of wire into the RIJV

Long sheath across VSD

The LV rim is deployed first

The Device

Positioning & Deployment

- 43 yr female
 - Apical muscular VSD (L →R shunt)
 - Normal PA pressures

 Successful device closure of VSD done using 14 mm Amplatzer Muscular Occluder

Apical Muscular VSD

Post Device Closure

- 55 yr old female (AWMI, thrombolysed)
 - 10 mm apical muscular VSD in postinfarction period
- Cath (7 days post MI)
 - Apical Muscular VSD
 - 90% LAD stenosis,
 - ModeratePAH
- Plan: PTCA ± Stent to LAD after Device closure of VSD

- Attempted Device closure with 10 mm & 16 mm Amplatzer devices - both of them cut into the RV side
- Deterioration of hemodynamic status requiring IABP insertion & Inotropic support
- Successful emergency surgical repair carried out.

High Apical VSD

LV rim of 10mm Device in RV after cutting through VSD

16 mm Device cutting through VSD leading to hemodynamic instability - procedure abandoned

- 55 yr old male (Extensive AWMI, thrombolysed)
 - 2.5 3 mm acquired VSD in the post-infarction period
- Cath (7 days post MI):
 - Multiple sieve -like Apical VSDs,
 - Septal aneurysm,
 - Total occlusion of LAD,
 - Mildly elevated PA pressures.

 Plan: In view of dyskinetic septum, advised surgical repair of VSD + Graft to LAD.

Multiple 'sieve-like'
VSDs +
Bulging IVS

	US REGISTRY n-18 *	POLISH EXPERIENCE n-7*
PROC. SUCCESS	16	5
RESIDUAL SHUNT	6	4
REPEAT PROCEDURE	2	1
30 DAY MORTALITY	28%	28%
FOLLOW – UP	11 (332 days)	4 (326 days)

M Szkutnik et al, Postinfarction VSD closure with Amplatzer occluders EJCTS 23 (2003) 323-327

^{*} Holzer et al, Device closure of post infarct VSD, Catheter Cardiovasc Interv 2004; 61:196-201

When & How do we Intervene?

- Maximal medical management (IABP, Inotropes etc.,) prior to intervention carries a high mortality rate.
- Early surgical correction offers good results

High rate of recurrent / residual VSDs (patch dehiscence, development of new or overlooked VSD) & high mortality rate (~ 11-35%)

 Trans catheter closure could be considered an interim measure prior to urgent surgery or a permanent alternative to primary or re-do surgery.

Unresolved Issues in TCC

- •Large area of necrotic muscle will cause "cutting-through" of the device from the LV to the RV, thus enlarging defect resulting in hemodynamic instability
- Anatomical issues:
 - High apical VSDs: inadequate septal tissue
 - Posterior location of VSD: accessibility
- •Septal aneurysm poses a major problem in positioning and optimal deployment of the device.

Can we....?

- Maximize medical management & wait for
 - improvement in clinical status
 - scarring of tissue reducing the friability
- Oversize devices
 - > To cover maximal area of friable tissue & prevent 'cutting through'
 - ➤In cases with aneurysmal septum, to seal it along with the defect