FFR-guided Jailed Side Branch Intervention

- Pressure wire in Bifurcation lesions -

Bon-Kwon Koo, MD, PhD

Seoul National University Hospital, Seoul, Korea

Bifurcation Lesions

Still a challenging lesion subset even in the era of DES Complex procedure, Low procedural success, High clinical events

Which is the best treatment strategy?

- Too many variables: type, vessel diameter, vessel length, angulation, plaque location, main branch lesion, side branch stenosis, lesion length, calcification ,,,,

Systemic 2 stenting vs. Provisional side branch intervention in DES era					
Author	n	Stent	TLR rate		
			2 stents	1 stent	
Colombo, Circulation 2004	85	Cypher	9.5%	4.5%	
Ge, AJC 2005	127	Cypher	8.8%	5.4%	
Pen, <i>AHJ 2004</i>	91	Cypher	5%	2%	

Provisional side branch intervention

- Which one needs additional complex intervention?
- How to assess?
- How to treat?

Provisional SB treatment

To treat ? or Not ?

- Reference vessel diameter \geq 2mm?
- Percent stenosis \geq 75%?
- Significant myocardial territory?

Provisional SB treatment

To treat ? or Not ?

Fractional Flow Reserve (FFR)

- Easily obtained, Stenosis specific, Simple(< $0.75 \rightarrow$ ischemia)
- Reflects both degree of stenosis and myocardial territory

FFR in Jailed Side Branch

Journal of the American College of Cardiology © 2005 by the American College of Cardiology Foundation Published by Elsevier Inc. Vol. 46, No. 4, 2005 ISSN 0735-1097/05/\$30.00 doi:10.1016/j.jacc.2005.04.054

Physiologic Assessment of Jailed Side Branch Lesions Using Fractional Flow Reserve

Bon-Kwon Koo, MD, PHD,* Hyun-Jai Kang, MD, PHD,* Tae-Jin Youn, MD, PHD,† In-Ho Chae, MD, PHD,† Dong-Joo Choi, MD, PHD,† Hyo-Soo Kim, MD, PHD,* Dae-Won Sohn, MD, PHD,* Byung-Hee Oh, MD, PHD, FACC,* Myoung-Mook Lee, MD, PHD, FACC,* Young-Bae Park, MD, PHD,* Yun-Shik Choi, MD, PHD,* Seung-Jae Tahk, MD, PHD‡

Seoul, Seongnam, Gyeonggi-do, and Suwon, Republic of Korea

RADI4 pressure wire: Successful FFR measurement: 94/97 lesions (97%)

Characteristics of lesions (n=94)

Bifurcation type (ICPS classification)				
Type 1	55 (58%)			
Type 2	12 (13%)			
Туре З	17 (18%)			
Туре 4	10 (11%)			
QCA of jailed branches				
MLD, mm	0.45 ± 0.25			
Reference diameter, mm	2.2 ± 0.5			
Percent stenosis, %	79 ± 11			
Lesion length, mm	7.0 ± 3.3			

Koo BK, et al. JACC 2005

Percent Stenosis (%)

Koo BK, et al. JACC 2005

FFR vs. Percent stenosis by QCA

	Percent stenosis		
-	<75% ≥75%		
All lesions (n=94)			
FFR <0.75	0	20(27%)	
FFR ≥0.75	20	53	
Vessel size ≥2.5mm (n=20)			
FFR <0.75	0	8(38%)	
FFR ≥0.75	7	13	

Koo BK, et al. JACC 2005

How to Assess?

FFR in Jailed Side Branch

What if "pressure wire" is not available?

Pre-PCI angiographic differences according to post-PCI SB FFR

	FFR<0.75	FFR≥0.75	P value
Type 1 lesion*	49%	29%	< 0.001
Angle < 70	89%	78%	NS
Plaque location – contra-lateral	23%	21%	NS
SB reference diameter	2.2 ± 0.3 mm	2.3 ± 0.3 mm	NS
SB percent stenosis	57 ± 18%	46 ± 20%	0.04

* Only angiographic parameter associated with FFR<0.75 after stenting in multivariate analysis *Hwang SJ, Koo BK, AHA 2005*

In bifurcation lesions with relatively short side branch stenosis......

1. QCA overestimates the functional significance of jailed SB lesions. Most lesions with tight stenosis don't need further intervention.

How to Treat?

Balloon artery ratio?

Goal of treatment?

My Hypothesis

- The treatment goal of jailed side branch lesion may be to maintain < 75% stenosis.
- Therefore, balloon inflation with a relatively small size balloon would be enough, if the gain could be maintained.

FFR in Provisional SB intervention

: preliminary data

Patient selection

Inclusion criteria

- De novo, bifurcation lesion
- Main branches

Successful DES implantation No significant stenosis proximal to the stented segment

Jailed side branches

Stenosis > 50%, diameter > 2 mm Lesion length < 10 mm Side branch length > 30 mm

Exclusion criteria

- Side branch slow flow after stenting
- Left main disease, CTO lesions
- Infarct related artery, thrombus
- Diffuse or distal lesion at SB
- RWMA at stented segments
- Myocardial disease, valvular disease
- Renal insufficiency

Aims

To assess

- The changes in functional significance of jailed SB after kissing balloon inflation
- The changes in functional significance of jailed SB during follow-up
- Clinical outcomes of FFR-guided jailed SB intervention strategy

Procedures

- Stenting the main branch with DES
- Measure FFR in jailed SB
- Side branch intervention, when FFR<0.75
 - Kissing balloon technique with a <u>relatively small</u> <u>balloon at side branch</u>
 - If FFR < 0.75 after kissing balloon,

 \rightarrow use larger balloon, or stent implantation

FFR: 0.61

FFR: 0.58

Baseline characteristics of patients (n=82)

Age, yr	62 ± 9
Male	55 (67%)
Risk factors	
Diabetes Mellitus	22 (27%)
Hypertension	46 (56%)
Hypercholesterolemia	30 (37%)
Current smoker	24 (29%)
Stable angina/Unstable angina	36 (43%) / 27 (33%)
LVEF, %	60 ± 8
Multi-vessel disease	39 (48%)

Baseline characteristics of lesions (n=86)

Type 1	Bifurcation type*	
	Type 1	33 (38%)
Type 4	Туре 4	28 (33%)
	Used stents (n=95)	
	Cypher / TAXUS	64 / 31
	Diameter, mm	2.9 ± 0.3
	Length, mm	30.1 ± 11.1
	Lesion Location	
	LAD-Diagonal	64 (74%)
	LCX-OM	18 (21%)
	RCA-PD/PL	4 (5%)

* ICPS classification

Changes in SB-FFR after Kissing balloon

Achievement of FFR>0.75: 19/20 lesions (95%)

Changes of FFR during 6M follow-up (53 lesions)

	Post-PCI	6 Mo Follow-up	
Main branch	0.96±0.03	0.96±0.04	
Jailed SB	0.86±0.05	0.87±0.08	P>0.05
SB-FFRadj*	0.90±0.05	0.91±0.07	

*Adjusted side branch FFR; SB-FFRadj = [side branch FFR] / [main branch FFR] Four main branch TVR lesions were excluded.

Changes in SB-FFR after Kissing balloon

Side branch balloon/artery ratio: 0.84±0.15

Changes in Functional Stenosis of Jailed SB

Kissing vs. No-Kissing

Changes in Functional Stenosis of Jailed SB TAXUS vs. Cypher P=0.01 0.02±0.04 0.02 **∆SB-FFR**adj **TAXUS** 0 Cypher -0.02 -0.03±0.09 -0.04

In bifurcation lesions with relatively short side branch stenosis......

- Quantitative coronary angiography overestimates the functional significance of jailed side branch lesions. Most lesions with tight stenosis don't need further intervention.
- 2. Kissing balloon inflation with relatively small size balloon in side branch is effective.
- 3. Functional significance of jailed side branch lesions do not change significantly during follow-up.

Clinical Outcomes

Death: 1 (non-cardiac)

Q wave MI: 0, **Stent thrombosis**: 0

TLR: 4 patients (4.9%)

2 lesions – main branch

1 lesion – side branch

1 lesion –both branches

Side branch TLR: 2.3%

Comparison with other strategies

	Colomb	oo, et al.	Ge, et al		Ge, et al	Koo, et al
Strategy	2Stent	1Stent/ PTCA	2Stent	1Stent/ PTCA	Crush	FFR- guided
Ν	65	22	117	57	181	82
SB diameter, mm	2.1	2.1	2.3	2.1	2.42	2.3
SB, %stenosis	57	46	62	54	64	48
SB, lesion length, mm	6.1	5.1	10.2	5.7	10.9	6.7
*MACE, %	14.3	13.6	15.5	10.1	18.2	6.1

*Cardiac death, Q MI, TVR

Circulation 2004;109:1244, AJC 2005;95:757, JACC 2005;46:615

Summary

In bifurcation lesions with relatively short side branch stenosis......

- QCA overestimates the functional significance of jailed SB lesions.
 Most lesions with tight stenosis don't need further intervention.
- 2. Kissing balloon inflation with relatively small size balloon in SB is effective.
- 3. Functional significance of jailed SB lesions do not change significantly during follow-up.
- 4. FFR-guided jailed SB intervention strategy seems to be feasible and effective.

CONCLUSION

In bifurcation lesions with relatively short side branch lesions....

Don't be too aggressive.

If you are in doubt, kissing with a small side branch balloon, or measure "the FFR" !