Coronary Physiology & Imaging Summit 2007

Noninvasive Coronary Imaging: Plaque Imaging by MDCT

Byoung Wook Choi Department of Radiology Yonsei University, Seoul, Korea

Yonsei University College of Medicine

Stary, H. C. et al. Circulation 1995;92:1355-1374

Introduction of noninvasive coronary artery imaging

What can MDCT show?

- Coronary Artery Anatomy
- Coronary Artery stenosis
- Coronary Artery In-stent restenosis

Lumen & Plaque

 Different CT attenuation value of plaques according to different composition could be used to differentiate vulnerable plaque that has lipidrich core.

Accuracy of 64-MDCT for stenosis

First author	patient number	Exclusion (%)	Sensitivity (%)	Specificity (%)	Analyzed segment s
Ehara	69	8	90	94	All
Fine	66	6	95	96	>1.5mm
Leber	59	_	73-88	97	All
Leschka	67	_	94	97	>1.5mm
Mollet	52	2	99	95	All
Pugliese	35	—	99	96	All
Raff	70	12	86	95	All
Ropers	82	4	95	93	>1.5mm

Yonsei University College of Medicine

Major Limitation is Resolution.

	Left main	Left anterior descending	Left circumflex	Right coronary	Total
Cardiac motion/arrhythmia	0	0	2	14	16
Extensive calcifications	1	6	5	3	15
Small vessel (<1.5 mm)	0	0	12	0	12
Adjacent contrast-filled structures*	0	1	6	3	10
Non-cardiac motion (breathing)	0	0	2	5	7
Poor opacification	0	1	2	1	4

*Veins or ventricle.

Table 2: Reasons for non-assessability of vessel segments

Nieman et al. Lancet 2001;357:599-603

CT classification of coronary artery plaque

- Calcified
- Mixed
- Noncalcified
 - Fibrous
 - Lipid-rich

Type I lesion	Initial lesion	
Type Ila lesion	Progression-prone type II lesion	Fatty dot or streak
llb	Progression-resistant type II	
Type III lesion	Intermediate lesion (preatheroma)	
Type IV lesion	Atheroma	Atheromatous plaque,
Type Va lesion	Fibroatheroma (type V lesion)	fibrolipid plaque,
		fibrous plaque, plaque
Vb	Calcific lesion (type VII lesion)	Calcified plaque
Vc	Fibrotic lesion (type VIII lesion)	Fibrous plaque
Type VI lesion	Lesion with surface defect, and/or hematoma- hemorrhage, and/or thrombotic deposit	Complicated lesion, complicated plaque

Stary, H. C. et al. Circulation 1995;92:1355-1374

MDCT-IVUS correlation

- Calcified plaque
- Hypoechoic/echolucent plaque (soft plaque)
- Hyperechoic/intermediate plaque (fibrous plaque)

CT attenuation value for different plaque composition

First Author	<i>Detec</i> <i>tors</i>	subje cts	<i>Standard of reference</i>	<i>Lipid-</i> <i>rich</i> <i>plaque</i> <i>(HU)</i>	Fibrous plaque (HU)	<i>Calcified plaque (HU)</i>
Leber	16	46	IVUS ^[1]	49±22	91±22	391±156
Viles-Gonzalez	16	6	Histopathology	51 ± 25	116 ± 27	-
Schroeder	4	12	Histopathology	42±22	70±21	715±328
Becker	4	11	Histopathology	47±9	104±28	
Schroeder	4	15	IVUS	14 ± 26	91±21	419±194
For detection of plaque by CT Intravascular ultrasound Sensitivity 86%,						scular ultrasound

69%,

90%,

61%

Van Mieghem et al. J Am Coll Cardiol 2006;47:1134–42

positive predictive value

negative predictive value

Specificity

Is there cut-off value?

Leber et al. J Am Coll Cardiol 2006;47:672–7

Pohle al. Atherosclerosis 2007;190:174–80

Characterizing a single atherosclerotic plaques as stable or vulnerable does Not seem possible based on measurement of its CT density alone.

Plaque area and volume

 MDCT can underestimate or overestimate plaque area or volume depending on different methods to measure. Correlation of the percentage of plaque area contributing to entire vessel area

Leber et al. J Am Coll Cardiol 2006;47:672–7

Plaque Remodeling

Senstivity: 100%, specificity 90%

Authour	detectors	Patients	MDCT(mm2)	IVUS(mm2)
Achenbach	16	13	20± 7	18± 8
Leber	64	59	9.4± 5.1	8.4± 4.5

A ^{2.4} _{2.2}	•	Remodeling	B 5	Pla	que area	
2 -	ACS	•	.4 -			
1.8	•		.35 -	ACS		
1.6 -	•	5A	.3 -	1.00		
1.4 -	+	• •	25 -	:		SA
1.2 -	1	: +	2 -	1	:	•
1 - 9 -	•	T	.15 -			1
.6		•	.1 -	i.	÷	
.4		•	1		•	*
	1	2 3	0	1	2	3

Hoffmann et al. J Am Coll Cardiol 2006;47:1655–62

Yonsei University College of Medicine

Prevalence of Noncalcified Plaque by 64-CT in Patients with an Intermediate Risk for Significant CAD

Hausleiter et al. JACC 2006;48:312-8

Plaque Characterization & Volume Quantification

Limitations

• CT:

- Protocol
- Contrast agent, calcification
- Image noise, partial volume effect
- External contour
- Convolution kernel
- Reproducibility
 - Interobserver agreement 92% for nocalcified plaque
 Ferencik et al. JACC 2006;47:207-9

Yonsei University College of Medicine

regressive coronary soft plaque

- Regression of soft plaque under lipid lowering therapy one year later
 - Atorvastatin 20mg/d
 - Acetylsalicylated acid 100mg/d

Burgstahler et al. Int J Cardiovasc Imaging 2006;22:119–21

Contrast enhancement of plaques

Halliburton et al. Coron Artery Dis 2006;17:553-60

Yonsei University College of Medicine

M/75 CC; 3 months of effort angina PHx: No DM, No HTN EKG: NSR, Normal EKG

Emergency room with prolonged chest pain 4 days later. marked ST-segment elevation in Leads V2-V4 with cardiac enzyme elevation, suggesting STEMI → Emergency PCI

Is it meaningful to classify plaques on the basis of their density?

- Atherosclerotic lesions typically consist of multiple different components ranging from necrotic to calcified tissue.
- High-risk plaques with a lipid core and a thin fibrous cap may be either predominantly calcified [Stary IVa], fibrous [Stary IVb], or soft [Stary IVc], but all are assigned to Stary class IV.
- "Lipid pools and spotty calcifications" embedded in atherosclerotic lesions are associated with plaque vulnerability.

Ehara et al. Circulation 2004;110:3424-9

Why CT?

- Noninvasive
- Technically easy to use
- Simple to interpret the results
- Convenient to the patients

 With ongoing technical developments image quality will improve permitting a comprehensive assessment of plaque morphology and composition.

Summary

- Clinical application not yet supported by any scientific evidence...
- Further studies are necessary.
- Long-term follow-up studies in larger populations...