

DES for Left Main Intervention

Marco Valgimigli, MD, PhD University of Ferrara, ITALY

Current Recommendation for unprotected LMCA Stenosis

 Class IIb C in ESC guideline (2005) and Class III in ACC guideline (2006) in patients eligible for CABG

 Class III is the conditions for which there is evidence and/or general agreement that a procedure/treatment is not useful/ effective and in some cases may be harmful.

Left Main Disease

Long-term CASS Experience

Cumulative survival estimates In 1484 CASS Registry patients with 50% LM coronary artery stenosis who were initially treated with CABG surgery or non surgical therapy.

Caracciolo et al. Circulation 1995; 91: 2325

CABG versus Medical therapy

Coronary Artery Bypass Graft Surgery Trialists Collaboration (7 Randomized trials*)

Long-Term Clinical Outcomes After Unprotected Left Main Trunk Percutaneous Revascularization in 279 Patients

Walter A. Tan, MD, MS; Hideo Tamai, MD; Seung-Jung Park, MD, PhD; H.W. Thijs Plokker, MD, PhD; Masakiyo Nobuyoshi, MD; Takahiko Suzuki, MD; Antonio Colombo, MD; Carlos Macaya, MD; David R. Holmes, Jr, MD; David J. Cohen, MD; Patrick L. Whitlow, MD; Stephen G. Ellis, MD; for the ULTIMA Investigators*

Background—Percutaneous coronary revascularization (PCI) has been increasingly applied to unprotected left main trunk (LMT) lesions, with varied long-term success. This study attempts to define the predictors of outcome in this population.

Methods and Results—Two hundred seventy-nine consecutive patients who had LMT PCI at 1 of 25 sites between 1993 and 1998 were studied. Forty-six percent of these patients were deemed inoperable or at high surgical risk. Thirty-eight patients (13.7%) died in hospital, and the rest were followed up for a mean of 19 months. The 1-year incidence was 24.2% for all-cause mortality, 20.2% for cardiac mortality, 9.8% for myocardial infarction, and 9.4% for CABG. Independent correlates of all-cause mortality were left ventricular ejection fraction ≤30%, mitral regurgitation grade 3 or 4, presentation with myocardial infarction and shock, creatinine ≥2.0 mg/dL, and severe lesion calcification. For the 32% of patients <65 years old with left ventricular ejection fraction >30% and without shock, the prevalence of these adverse risk factors was low. No periprocedural deaths were observed in this low-risk subset, and the 1-year mortality was only 3.4%.

Conclusions—Patients undergoing unprotected LMT PCI have frequent serious comorbidities and consequently have high event rates. PCI may be an alternative to CABG for a select proportion of elective patients and may also be appropriate for highly symptomatic inoperable patients. Meticulous follow-up of hospital survivors is required because of the rather high mortality during the first few months after treatment. (Circulation. 2001;104:1609-1614.)

- 279 patients who underwent ULMCA PCI from 25 centres 1993-1998
- 15% acute MI (13% shock)

...Not really COURAGE-like Tx

TABLE 3. In-Hospital Treatment

	All Patients (n=279), %	Low-Risk Subset (n=89), %
Aspirin	90.9	96.6
Ticlopidine	41.7	57.3
β-Blockers	28.4	28.4
Abciximab	4.3	1.1
Balloon only	15.1	4.5
Stent	68.8	76.4
Rotablator as 1° treatment	9.3	8.9
Directional coronary atherectomy	17.1	19.1
Ablation followed by stenting	11.2	11.2
Pulmonary artery catheter	16.8	3.9
Temporary pacer	31.6	20.5
Intra-aortic balloon counterpulsation	46.0	26.4
Prophylactic percutaneous cardiopulmonary support	5.9	0

The ULTIMA registry

Urgent and elective treatment

- RESTENOSIS is equal to DEATH
- Angiographic F-UP after LM PCI

Restenosis = Death?

Excess of events confined
 To high surgical risk or
 those with Comorbodities

Long-term Mortality Rate at F/UP In PCI series of unprotected LM

Low Mortality for good surgical candidate

In-hospital death (%)

Unprotected LMCA stenting in the BMS era

- PCI for unprotected LMCA stenosis is feasible
- Short and long-term mortality is extremely heterogeneous reflecting different patient selection
- Restenosis = death ?
- PCI should be reserved to very high surgical risk patients...i.e. PCI may just be better than medical TX

Six month TLR In PCI series of unprotected LM

Left Main Substudy Population

Clinical Presentation (%)

Variables	BMS Group (N=86)	DES Group (N=95)	P- value
Stable Angina	50	48	0.8
Unstable Angina	33	33	1
Acute Myocardial Infarction*	17	20	0.70
Cardiogenic Shock at Entry*	9	12	0.66

^{*:} Parameters included n the Parsonnet classification

1-year MACE Rate

Whole Population

HR 0.54 [95% CI: 0.31-0.87]; p=0.01)

Valgimigli et al, Circulation. 2005 Mar 22;111(11):1383-9.

1-year MACE Rate

Elective Population

HR 0.40 [95% CI: 0.21-0.78]; p=0.007)

Elective and unprotected (n=104) 38% vs. 15% (HR 0.37 [95% CI: 0.17-0.84]; p=0.01)

1-year TVR

Whole Population

Use of DES adjusted HR 0.33 [95% CI: 0.19-0.57];
p=0.00009

Re-Intervention Rates

A COLLABORATIVE SYSTEMATIC REVIEW AND META-ANALYSIS ON 1,203 PATIENTS UNDERGOING PERCUTANEOUS DRUG-ELUTING STENTING FOR UNPROTECTED LMCA DISEASE

- At longest available F-up
 - MACE:16.3% (11.4-21.2),
 - Death: 4.9% (2.8-7.0)
 - ●TVR: 6.5% (3.7-9.4)

66%

- DES versus BMS
 - \bullet HR for MACE 0.34 (0.16-0.71, p=0.004)

Biondi Zoccai et al. Am Heart J. 2008 Feb;155(2):274-83

LMCA DES Stenting...and so what?

- How to maximaze DES performance?
 - Which DES?
 - IVUS guidance?
 - Single or systematic bifurcation stenting?

What about Stent thrombosis?

Should we start to DES LMCA <u>BEFORE</u> awaiting for RCT?

LMCA DES Stenting...and so what?

- How to maximaze DES performance?
 - Which DES?
 - IVUS guidance?
 - Single or systematic bifurcation stenting?

- What about Stent thrombosis?
- Should we start to DES LMCA <u>BEFORE</u> awaiting for RCT?

LMCA stenting at the Thoraxcenter

Valgimigli et al. J Am Coll Cardiol. 2006;47:507

SES vs. PES

Angiographic outcome

Valgimigli et al. J Am Coll Cardiol. 2006;47:507

SES vs. PES

J Am Coll Cardiol. 2006;47:507

SES vs. PES

J Am Coll Cardiol. 2006;47:507

Role of IVUS

- •58 pts undergoing elective and unprotected intervention at LMCA
- •24 (41%) had Stent deployment under IVUS guidance

Am J Cardiol. 2005 Mar 1;95(5):644-7.

Role of Stenting technique

- 94 pts undergoing treatment for distal LMCA stenosis
- 48 (51%) pts received single vessel; 46 pts bifurcation stenting

Valgimigli et al. Am Heart 2006 Nov;152(5):896-902

Role of Stenting technique

LMCA DES Stenting...and so what?

- How to maximaze DES performance?
 - Which DES?
 SES or PES
 - IVUS guidance? No data to recommend systematic IVUS
 - Single or systematic bifurcation stenting?

The easiest the better

- What about Stent thrombosis?
- Should we start to DES LMCA <u>BEFORE</u> awaiting for RCT?

LMCA DES Stenting...and so what?

- How to maximaze DES performance?
 - Which DES?
 - IVUS guidance?
 - Single or systematic bifurcation stenting?

What about Stent thrombosis?

Should we start to DES LMCA <u>BEFORE</u> awaiting for RCT?

In-hospital mortality

Stent thrombosis (ARC)

out of hospital cardiac death-MI at 1-year

Overall mortality rate at 1-year

LMCA DES Stenting...and so what?

- How to maximaze DES performance?
 - Which DES?
 - IVUS guidance?
 - Single or systematic bifurcation stenting?

What about Stent thrombosis?

Reassuring data...at 1-year!!

Should we start to DES LMCA <u>BEFORE</u> awaiting for RCT?

LMCA DES Stenting...and so what?

- How to maximaze DES performance?
 - Which DES?
 - IVUS guidance?
 - Single or systematic bifurcation stenting?

- What about Stent thrombosis?
- Should we start to DES LMCA <u>BEFORE</u> awaiting for RCT?

