Quantitative Angiographic Measurement of Bifurcation Coronary Lesions Left Main vs. Non-Left Main

Young-Hak Kim, MD, PhD

Cardiac Center, University of Ulsan College of Medicine Asan Medical Center, Seoul, Korea

Quantitative Coronary Angiography

Diameter	305	P	
	5 10 15 20 mm		
MLD:	1.08 mm		
Ref D:	2.72 mm		
Obstr Length:	5.73 mm		
Diam (Prox, Dist):	2.65, 2.29 mm		
% MLD:	60 %		
% Area at MLD circ:	84 %		
% Area at MLD:	74 %		

- Measurement of 2D images is the current standard of QCA.
- The standard way to present the degree of stenosis.
- The QCA outcomes has a close relation with clinical outcomes.
- But, it has many limitations to be resolved.

Interpolated Reference

• MLD = 1.3

- Mean reference: (3.5+2.2) / 2 = 2.85
 DS = (2.85-1.3) / 2.85 X 100 = 54.4%
- Interpolated reference: 3.2
 DS = (3.2-1.3) / 3.2 X 100 = 59.4%

• MLD = 0.5

- Mean reference: (3.5+2.2) / 2 = 2.85
 DS = (2.85-0.5) / 2.85 X 100 = 82.5%
- Interpolated reference: 2.5
 DS = (2.5-0.5) / 2.5 X 100 = 80.0%

limitations of Bifurcation QCA

Method to determine the proper reference diameter for each individual segment

The "Step down" phenomenon is a major limitations of Standard QCA when applied to bifurcation analyses

Overestimation of Reference Main vessel Main vessel Side branch **Diameter main Reference diameter**

Asan Medical Center

Luminal diameter

Underestimation of reference If the index is the distal segment.

Underestimation of Side Branch Reference

How we present late loss in bifurcation ? What does it mean?

Late loss is only meaningful if the segment analyzed is specified

Gorktekin O et al. Catheter Cardiovasc Interv 2007;69:172

Polygon of Confluence by CASS-QCA : Innovative Method of Bifurcation QCA

Ramcharritar S et al. Eurointervention 2008;3:553

Reference Line Interpolated

Description of Bifurcation QCA

- 1. Proximal edge (5mm)
- 2. Proximal main stent
- 3. Distal main stent
- 4. Distal edge main (5mm)
- 5. Side branch stent

- 6. Distal edge side (5 mm)
- 7. Polygon of confluence
- 8. Ostium of side branch (5mm)
- 9. Main vessel stent + edges
- 10. Side branch stent + distal edge

Presenting results in segmental model

Ramcharritar S et al. Eurointervention 2008;3:553

Bifurcation QCA

Bifurcation Segment Model

JEONG HYEONG JIN

ID

27258695

			۲ ۱)	Ref A mm²)	Plaqu (mm²)	ie A	%A (%)
Darina	а		4	.55	0.53		12
Ratio	Dist/Prox a	at Ostium	L	uminal	Refer	ence	
∕lurra Finet	У		15 17		2 - 41 1 - 1		
	Prox pos (mm)	Length (mm)	%D (%)	Min D (mm)	Max D (mm)	Mean D (mm)	RefD (mm)
1	0.00	4.97	7.16	1.88	2.46	2.21	2.03
2	4.97	2.59	4.56	1.40	2.39	2.07	1.46
3	7.56	8.23	38.29	0.83	1.40	1.08	1.34
4	15.80	4.98	16.54	1.24	1.75	1.54	1.48
5	7.67	5.91	19.84	1.03	1.46	1.28	1.28
6	13.58	5.00	11.07	1.20	1.37	1.29	1.35
7 Mai	n 5.13	2.43	4.56	1.40	-	S	1.46
7 Side	5.13	2.54	4.56	1.40	-		1.46
8	7.67	2.03	19.84	1.03	1.36	1.20	1.28
9	0.00	20.78	38.29	0.83	2.46	1.57	1.34
10	7.67	10.91	19.84	1.03	1.46	1.28 Pa	1.28 ae 1/3
		Pade	1/3				

Bifurcation QCA Between LM vs. Non-LM

Between APR 2003 and SEP 2004 in Patients Treated with Main-Branch SES Alone

	LM	Non-LM
No. of lesions	16	99
Location		
LM	16	93
LAD - Diag		6
LCX - OM		0
RCA - PDA		0

LM vs. Non-LM Kissing Balloon Inflation and MEDINA Class

	LM (N=16)	Non-LM (N=99)	р
Kissing balloon inflation	3 (19)	48 (49)	0.031
MEDINA class			0.034
1.1.1	3 (19)	31 (31)	
1.1.0.	8 (50)	27 (27)	
1.0.1.	2 (13)	5 (5)	
0.1.1.	0	13 (13)	
1.0.0.	2 (13)	1 (1)	
0.1.0.	1 (6)	20 (20)	
0.0.1	0	1 (1)	

LM vs. Non-LM Baseline QCA

	LM (N=16)	Non-LM (N=99)	э Р
Proximal main branch (seg.# 2)			
Reference (mm)	$\textbf{3.52} \pm \textbf{0.58}$	3.07 ± 0.60	0.006
Minimal lumen diameter (mm)	1.58 ± 0.59	1.54 ± 0.72	0.827
Diameter stenosis (%)	52.6 ± 20.2	49.3 ± 21.2	0.558
Distal main branch (seg.# 3)			
Reference (mm)	3.06 ± 0.96	$\textbf{2.74} \pm \textbf{0.58}$	0.073
Minimal lumen diameter (mm)	1.94 ± 0.66	1.20 ± 0.56	<0.001
Diameter stenosis (%)	37.6 ± 23.9	54.9 ± 20.1	0.004

LM vs. Non-LM Baseline QCA

	LM (N=16)	Non-LM (N=99)	р
Side branch (seg.# 5)			
Reference (mm)	$\textbf{2.79} \pm \textbf{0.47}$	2.54 ± 0.75	0.197
Minimal lumen diameter (mm)	$\textbf{2.26} \pm \textbf{0.79}$	1.64 ± 0.93	0.013
Diameter stenosis (%)	31.1 ± 12.6	$\textbf{38.0} \pm \textbf{25.4}$	0.354
Angles			
Proximal (°)	125.5 ± 22.7	133.7 ± 31.0	0.317
Distal (°)	74.8 ± 19.0	60.9 ± 24.5	0.032

LM vs. Non-LM Post-procedural QCA in Pts Without Kissing

	LM (N=13)	Non-LM (N=51)	р
Proximal main branch (seg.# 2)			
Reference (mm)	4.02 ± 0.90	3.46 ± 0.63	0.012
Minimal lumen diameter (mm)	$\textbf{3.23}\pm\textbf{0.50}$	3.02 ± 0.49	0.169
Diameter stenosis (%)	16.3 ± 10.5	12.7 ± 9.0	0.245
Length (mm)	11.0 ± 4.0	13.5 ± 6.2	0.178
Distal main branch (seg.# 3)			
Reference (mm)	2.97 ± 0.69	2.94 ± 0.56	0.834
Minimal lumen diameter (mm)	$\textbf{2.93} \pm \textbf{0.54}$	2.65 ± 0.48	0.073
Diameter stenosis (%)	10.8 ± 6.5	11.1 ± 9.2	0.940
Length (mm)	13.4 ± 12.3	18.3 ± 12.4	0.991

LM vs. Non-LM Post-procedural QCA in Pts Without Kissing

	LM (N=16)	Non-LM (N=99)	р
Side branch (seg.# 5)			
Reference (mm)	$\textbf{2.76} \pm \textbf{0.52}$	$\textbf{2.55} \pm \textbf{0.77}$	0.366
Minimal lumen diameter (mm)	1.94 ± 0.66	1.67 ± 0.78	0.264
Diameter stenosis (%)	31.0 ± 15.0	36.7 ± 21.2	0.365
Length (mm)	6.7 ± 4.4	6.7 ± 4.4	0.991

LM vs. Non-LM Gain and Loss : Proximal Main-Branch

	LM (N=13)	Non-LM (N=51)	р
Proximal main branch			
Gain (mm)	1.79 ± 0.87	1.44 ± 0.62	0.096
Loss (mm)	-0.01 ± 0.23	0.03 ± 0.35	0.656
Distal main branch			
Gain (mm)	1.15 ± 0.83	1.42 ± 0.61	0.182
Loss (mm)	0.21 ± 0.46	0.17 ± 0.40	0.730
Side branch			
Gain (mm)	-0.19 ± 0.31	-0.11 ± 0.55	0.640
Loss (mm)	0.03 ± 0.50	-0.11 ± 0.44	0.299

Conclusion

- The new dedicated software of bifurcation coronary system is a novel way to determine the lesion characteristics together with the angulation of the bifurcation.
- In addition, it provides more insights into the change of regional luminal diameter in bifurcation segments.
- In the limited patients, the regional late losses in proximal and distal MB, and SB were comparable between the LM and non-LM coronary lesions treated with simple SES implantation.
- Further studies with this software will help to assess the mechanisms of restenosis after DES implantation for bifurcation coronary lesions.

