Optimal PCI Strategy in True Coronary Bifurcation Lesion Minimal Crush Technique with Optimal Kissing Ballooning Balloon Size, Pressure, and Dilation Force

> Seung-Jea Tahk, MD., PhD. Ajou University Medical Center Suwon, Korea

13th Angioplasty Summit TCT Asia Pacific Seoul Korea, April 23-25, 2008

Bifurcation lesion and revascularization

- Bifurcation PCI is more than 15-20% of revascularization procedures, and increasing with use of DES ...
- Bifurcation PCI remains a challenge in terms of procedural success rate as well as long term MACE, <u>especially</u> <u>restenosis in SB ostium</u>.
- However, previous studies are often small scale and display methodological flaws and other shortcomings such as inaccurate designation of lesions, heterogeneity, and <u>inadequate description of techniques implemented</u>.

Technical issues in crush technique How to improve clinical outcome of two stent technique

- Attain consistent and definite DES coverage of SB ostium with minimal length of multiple overlapped stent layers
- Avoid stent distortion
- <u>Acquisition of optimal lumen area at SB ostium and</u> <u>excellent apposition of DES with SB wall</u>

Impact of FKB on SB restenosis in crush technique

	Kissing Balloon(94)	No Kissing Balloon(92)	P value
Main Vessel			
Late lumen loss	0.26 ± 0.65	0.35 ± 0.64	0.3
Restenosis rate	6.4%	12.0%	0.2
Side branch			
Late lumen loss	0.24 ± 0.50	0.58 ± 0.77	< 0.001
Restenosis rate	9.6%	41.3%	< 0.000001

SES(n=130)/PES(n=101); 9 month follow-up

A Hoye, A Colombo, et al. J Am Coll Cardiol 2006;47:1949-58

MINIMAL CRUSHING TECHNIQUE WITH FINAL KISSING BALLOONING - IMMEDIATE AND 8 MONTHS FOLLOW UP RESULTS-

> Seung-Jea Tahk, MD., PhD. et al. Ajou University Medical Center Suwon, Korea

Study Population

From July 2006 to July 2007

MV and SB Diameter Stenosis >50% within 5mm to carina on visual estimation SB Vessel Size>2.25mm, treated with CYPER stent

56 bifurcation lesions of 51 patients	N = 51
Age (years) Male	61.5 ± 10.5 32 (63%)
Clinical Diagnosis	02 (0070)
Stable angina Unstable angina	6 (11.8%) 40 (78.4%)
STEMI / NSTĚMI	5 (9.8%)
LV EF (%)	64.6 ± 7.6

Characteristics of Bifurcation Lesion

아주대학교의료원 Ajou University Medical Center

Quantitative Angiography Findings

Variable	MV	SB	P value
Baseline			
Reference diameter (mm)	$\textbf{3.50} \pm \textbf{0.58}$	$\textbf{2.79} \pm \textbf{0.38}$	< 0.01
Lesion length (mm)	<u>24.7 ± 6.4</u>	<u> 19.4 ± 7.2</u>	< 0.01
MLD (mm)	$\textbf{1.40} \pm \textbf{0.65}$	$\textbf{0.97} \pm \textbf{0.65}$	< 0.01
Diameter stenosis (%)	64.1 ± 13.2	$\textbf{65.9} \pm \textbf{18.8}$	0.726
After Crushing			
MLD (mm)	$\textbf{2.80} \pm \textbf{0.43}$	$\textbf{2.21} \pm \textbf{0.49}$	< 0.01
Diameter stenosis (%)	19.0 ± 8.8	21.6 ± 11.0	0.126
After Final Kissing			
MLD (mm)	3.13 ± 0.39	$\textbf{2.54} \pm \textbf{0.38}$	< 0.01
Diameter stenosis (%)	10.5 ± 5.5	$\textbf{10.4} \pm \textbf{5.6}$	0.903

Quantitative Angiography Findings

Variable	After Crushing	After Kissing	P value
<u>Main vessel</u>			
Under side branch origin			
MLD (mm)	$\textbf{2.82} \pm \textbf{0.43}$	3.15 ±0.37	< 0.01
Diameter stenosis (%)	19.2 ± 8.8	10.0 ± 5.4	< 0.01
Side branch ostium			
MLD (mm)	$\textbf{2.23} \pm \textbf{0.49}$	$\textbf{2.55} \pm \textbf{0.38}$	< 0.01
Diameter stenosis (%)	$\textbf{21.4} \pm \textbf{10.8}$	10.1 ± 5.5	< 0.01

8 month Angiographic Follow-Up (n=47)

Variable	Post-PCI	Follow-up	P value
Main vessel			
Lesion			
MLD (mm)	$\textbf{3.12} \pm \textbf{0.36}$	$\textbf{2.87} \pm \textbf{0.41}$	0.000
Diameter stenosis (%)	9.41 ± 4.43	15.03 ± 8.46	0.000
Late loss		0.24 ± 0.39	
Under side branch origin			
MLD (mm)	3.11 ± 0.36	$\textbf{2.92} \pm \textbf{0.34}$	0.000
Diameter stenosis (%)	9.45 ± 4.37	15.12 ± 8.32	0.000
Late loss		$\textbf{0.19} \pm \textbf{0.31}$	
Side branch-Ostium			
MLD (mm)	$\textbf{2.49} \pm \textbf{0.42}$	$\textbf{2.06} \pm \textbf{0.59}$	0.000
Diameter stenosis (%)	11.63 ± 7.25	25.39 ± 21.25	0.000
Late loss		0.44 ± 0.67	

Procedural Data and Complications

	(%)
DES coverage of SB ostium	54 (96.4%)*
Final kissing ballooning	54 (96.4%)
SB wire recross failure	0 (0.0%)
SB balloon recross failure	2 (3.6%)
MV complication	
Minor Dissection	2 (3.6%)
Transient slow flow	3 (5.4%)
SB complication	0 (0.0%)
CK-MB >x3 of upper normal value	9/51 (17.6%)

* IVUS and/or Angiographic Stent View

Follow-Up Results: Interim Outcomes

	(%)
Mean follow-up periods	7.6 \pm 2.9 month
Major adverse clinical events	6 (11.8%)
Death	0
Non fatal myocardial infarction	0
Repeat revascularization	6 (11.8%)
SB ostium	5
MV non-bifurcation site	3
Stent thrombosis	1 (1.9%)
Cerebrovascular accident	0
8 month F/U coronary angiography	44/51 (86.3%)

CAN WE IMPROVE THE PERFORMANCE OF FINAL KISSING BALLOONING IN CRUSH TECHNIQUE?

LaPlace's law

The larger the vessel radius, the larger the wall tension required to withstand a given internal fluid pressure. For a given vessel radius and internal pressure, a spherical vessel will have half the wall tension of a cylindrical vessel.

Pascal's principle and LaPlace's law

Pascal's principle requires that the pressure is everywhere the same inside the balloon at equilibrium. But there are great differences in wall tension on different parts of the balloon. The variation is described by Laplace's Law.

아 주 대 학 교 의 료 원 Ajou University Medical Center

Mechanism of SB osteal lumen enlargement during kissing ballooning

Mechanism of SB osteal lumen enlargement during kissing ballooning

Inflation pressure, diameter, and dilating force Importance of lesion preparation/predilation

What we should consider during kissing ballooning after crushing

- Before Crushing
 - Lesion preparation and modification
- After Crushing
 - Separate high pressure dilation of MV and SB
 - Maintain same dilating force during kissing ballooning to obtain optimal stent expansion at SB ostium

13th Ana

- Balloon size, compliance, and length
- Inflation pressure

Final kissing ballooning Balloon size, inflation pressure and dilation force

 $F = \frac{Pressure \ x \ Diameter}{2 \ x \ Wall \ Thickness}$

13th Angioplasty

Fmv = Fsb

Suggestions based on logical thinking

- Smaller lumen/balloon may need more higher inflation pressure to equalize dilation force
 - Should consider compliance and length of balloon
- Acquisition of optimal lumen of MV and SB ostium before final kissing balloon is very important especially in hard/calcified lesion and heavy plaque burden

- 1. Same initiation pressure. To atm each
- 2. Same dilating force: 14 x 2.5 atm.cm, 10 x 3.5 atm.cm

Thick Cylindrical Vessel Phantom

Same inflation pressure 아주대학교의료원 Ajou University Medical Center

Thick Cylindrical Vessel Phantom

Same inflation pressure 아주대학교의료원 Ajou University Medical Center

Same inflation pressure 아주대학교의료원 Ajou University Medical Center

Same inflation pressure 아주대학교의료원 Ajou University Medical Center

In vivo observation

- <u>5 unstable angina patients</u> with LAD/DIG bifurcation lesion, after informed consent
- Age: 59.6±12.8 yrs, LVEF: 63±13%
- Medina classification: <u>111</u>:(4), <u>110</u>:(1)
- Mini-crush technique with Cypher stents
- Kissing balloon dilation
 - 1st : Same inflation pressure (8-10 atm)
 - 2nd: Same dilating force (Pmv x Rmv = Psb x Rsb)
- IVUS pullback in both LAD and DIG after each kissing ballooning

13th Ana

In vivo observation: pre-PCI QCA

Variable		
Main Vessel		
Reference vessel diameter (mm)	3.65 ±0.07	
MLD (mm)	0.63 ± 0.43	
Diameter stenosis (%)	82.27 ± 11.72	
Under side branch origin		
MLD (mm)	1.07 ± 0.55	
Diameter stenosis (%)	70.09 ± 15.61	
Side Branch		
Reference vessel diameter (mm)	2.64 ±0.06	
MLD (mm)	0.59 ± 0.28	
Diameter stenosis (%)	77.21 ± 10.54	
Ostium		
MLD (mm)	1.00 ± 0.75	
Diameter stenosis (%)	61.41 ± 29.26	

In vivo observation: procedural data

	Main Vessel	Side Branch
Balloon predilatation		
Diameter (mm)	2.40±0.22	2.40±0.22
Pressure (atm)	12.8±1.1	10.0±4.9
Stent deployment		
Diameter (mm)	3.50±0.00	2.55±0.11
Length (mm)	23.0±3.5	19.0±4.2
Pressure (atm)	11.6±3.8	16.8±1.1
Kissing ballooning		
Diameter (mm)	3.20±0.27	2.45±0.27
Length (mm)	17.4±7.7	19.2±3.7
Pressure (atm)		
1 st Equal Pressure	9.6±0.9	9.6±0.9
2 nd Equal Dilating Force	9.6±0.9	13.2±1.1

In vivo observation: post-PCI QCA

Variable	Same Pressure	Same Dilating Force	P value
Main Vessel			
MLD (mm)	$\textbf{3.02} \pm \textbf{0.11}$	$\textbf{3.26} \pm \textbf{0.09}$	0.049
Diameter stenosis (%)	16.98 ± 3.42	10.30 ± 2.72	0.028
Under side branch origin *			
MLD (mm)	3.02 ± 0.11	3.26 ± 0.09	0.049
Diameter stenosis (%)	16.98 ± 3.42	10.30 ± 2.72	0.028
Side Branch			
MLD (mm)	2.17 ± 0.19	$\textbf{2.32} \pm \textbf{0.09}$	0.100
Diameter stenosis (%)	17.01 ± 7.07	12.72 ± 5.30	0.297
Ostium			
MLD (mm)	$\textbf{2.30} \pm \textbf{0.21}$	2.41 ±0.16	0.069
Diameter stenosis (%)	15.26 ± 6.20	9.92 ± 4.57	0.043

* All 5 patients have the narrowest segment in MV under SB ostium.

In vivo observation: post-PCI IVUS

Variable	Same Pressure	Same Dilating Force	P value
Main Vessel			
Carina			
MSA (mm²)	8.38±1.50	8.64±1.67	0.357
EEM CSA (mm ²)	15.86±3.57	15.76±3.57	0.828
Under bifurcation			
MSA (mm²)	6.16±1.08	6.18±1.05	0.721
EEM CSA (mm ²)	11.88±1.79	11.88±2.37	1.000
Side branch ostium			
MSA (mm²)	3.98±0.29	4.48±0.67	0.182
Delta Increase in MSA (mm ²)		<u>0.50±0.69</u>	

In vivo observation: Case

아주대학교의료원 Ajou University Medical Center

Final kissing balloon

Balloon size, length, compliance, inflation pressure, and dilating force

Kissing #1 LAD 3.0x20mm 8atm

* FURTHER EXPERIMENTS SHOULD BE NECESSARY TO CLARIFY THE REQUIREMENTS FOR OPTIMAL KISSING BALLOON TECHNIQUE.

LAD 3.0x20mm 14atm DIG* 3.0x13mm 8atm

* non-compliant high pressure balloon

9.6 mm, 1 mm/div No Catheter

9.6 mm, 1 mm/div

Conclusions

- To improve the performance of kissing ballooning after crushing ...
 - Adequate lesion preparation before crushing
 - Appropriate balloon size and compliance
 - Separate high pressure dilation of MV and SB before kissing
 - Maintain same dilating force (based on LaPlace's law) during kissing
- Techniques and devices for bifurcation PCI is under developing and not standardized.
- We need more experimental studies and prospective randomized trials <u>comparing well defined and refined techniques in well defined</u> <u>lesions</u> which will provide optimal treatment algorithm and technique in patients with <u>true bifurcation lesion</u>.

Impact of elaborate techniques on clinical outcome Mini-crush technique/Balloon crush

- 52 bifurcation lesions (45 consecutive patients)
- Minicrush with final kissing ballooning
- Procedural success: 100%
- Angiographic success: MV 96.1%, SB 98.1%
- Overall TLR: 12.2%
- Side branch stent thrombosis: 1(2.2%)
- 8 month angiographic F/U: 41/45 (93.3%)
- Restenosis: MV 12.2%, <u>SB 2.0%</u>

AR Galassi, A Colombo, et al. Catheter Cardiovasc Interv 69:976-983, 2007 13th Δn

