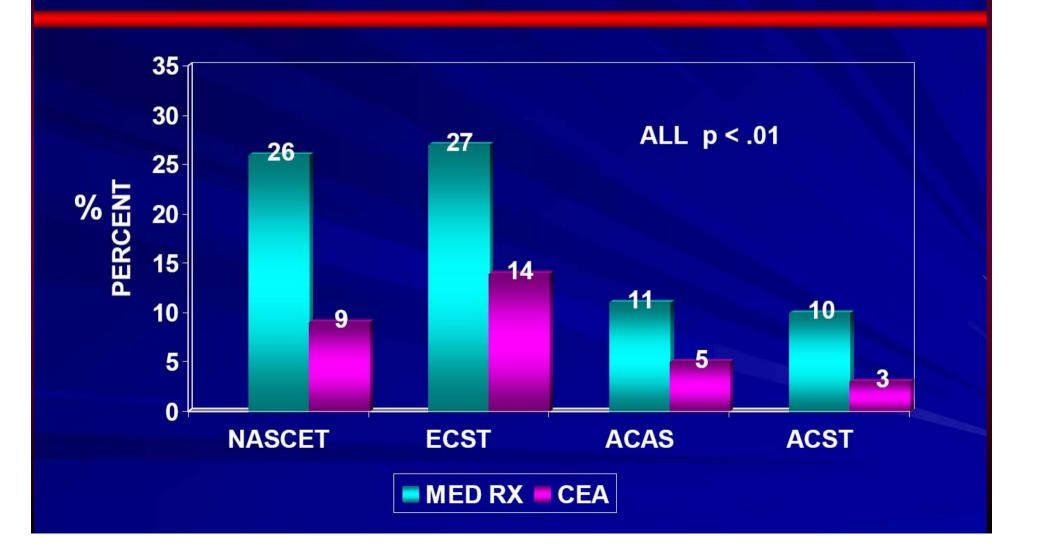


Carotid Artery Stenting for
Asymptomatic & Symptomatic Patients:
How to Maximise Benefits & Reduce Risk?

ROSLI Mohd Ali
Head
Department of Cardiology
National Heart Institute
Kuala Lumpur



The Crux

- 1. Do It Safely & Effectively
- 2. Have a Low Complication Rate

CVA Incidence with CEA vs. Med Rx: Results of 4 Pivotal Trials

CAS vs CEA: Conflicting data

Favours CEA:

SPACE

EVA-3S

Lancet 2006; 368: 1239 – 47. Abstract

NEJM 2006; 355: 1660 – 71. Abstract

Non-Inferior to CEA SAPPHIRE

NEJM 2004; 351: 1493 - 50. Abstract

(FDA approval for high grade symptomatic pt. at high operative risk)

2005 Registry Data From 20% of Non-federal Hospitals in US

Outcome	CEA (%)	CAS (%)	р
<i>All Patients</i> n -	122,000	11,700	
In-hosp. mortality	0.57	1.1	0.004
Post-op stroke	1.1	1.8	0.0004
Asymptomatic			
In-hosp. mortality	0.38	0.57	0.18
Post-op stroke	0.88	1.6	0.001
Symptomatic n -	- 9,380	1,116	
In-hosp. mortality	1.4	4.6	0.0002
Post-op stroke	2.5	4.1	0.16

McPhee J Vasc Surg 2008; DOI: 10.1016/j.jvs.2008.07.017

30 day Outcomes With CEA vs CAS Society of Vascular Surgery Registry

Outcomes	CAS (%) n – 1450	CEA (%) n – 1368	p
Combined death, Stroke & MI	5.72	2.63	<0.001
Death	2.07	0.73	0.004
Stroke	3.52	1.68	0.003
MI	1.17	0.58	0.110
TIA	1.59	0.80	0.060

Sidawy AN J Vasc Surg 2009; 49: 71 – 79 Abstract

Issues & Challenges of CAS

- 1. Data favouring CEA
- 2. No of cases in Asia are not that many More prevalent intracranial lesions?

Experience leads to better procedural results

- 3. Neurologists & Physicians are gatekeepers Skeptical about the benefits of CAS
- 4. Optimise medical therapy
 - antiplatelet therapy, statins, anti-hypertensives

Issues in Carotid Intervention: Turf War

Vascular Surgeon

Interventional Radiologist

Cardiologist

Carotid Artery Stenosis

Indications for Intervention:

Symptomatic > 50% stenosis

(pooled data from NASCET,

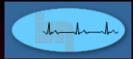
ECST, VA)

Asymptomatic

> 70 % stenosis

(> 60% in ACAS)

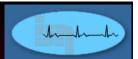
Indications for Carotid Revascularization


Indication	Symptomatic	Asymptomatic
Proven	70-99% Stenosis	>60% Stenosis
	Complication Risk	Complication Risk
	<6%	<3%
		Life Expectancy >5 yrs
Acceptable	50-69% Stenosis	>60% Stenosis
	Complication Risk	Complication Risk
	<3%	<3%
		Planned CABG
Unacceptable	<29% Stenosis	<60% Stenosis
	Or	Or
	Complication Risk	Complication Risk
	>6%	>5%

Adapted from: Roubin, G. S. et al. Circulation 2006;113:2021-2030

AHA Maximum Acceptable Combined Peri-operative Neurological Morbidity & Mortality with CEA

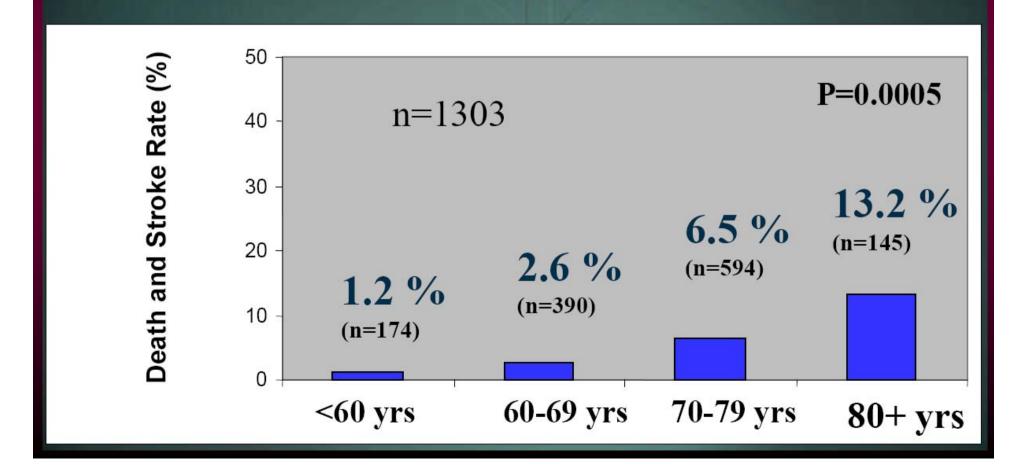
Asymptomatic	3 %
Symptomatic – TIA	5 %
Symptomatic – CVA with recovery	7 %
Recurrent stenosis	10 %

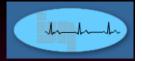

Choose Your Patients Well

Team based approach is ideal (cardiologist / interventional radiologist & vascular surgeon)

High-risk Characteristics

	Anatomic Risk (n=643)	Physiological Risk (n=756)
CHF (class III/IV) and/or LVEF < 30%	-	24.8%
Open heart surgery within 6 weeks	y _	1.5%
Recent MI (> 24 hours and < 4 weeks)	-	2.3%
Unstable angina (CCS class III/IV)	1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -	12.8%
Synchronous severe cardiac & carotid disease req heart surgery & carotid revascularization	_	8.9%
Severe pulmonary disease	_	14.6%
Abnormal stress test	-	16.1%
Age ≥ 80 years as a single risk factor	_	42.5%
Contralateral carotid occlusion	26.0%	_
Contralateral laryngeal palsy	4.2%	_
Post radiation treatment	17.4%	-
Previous CEA recurrent stenosis	53.8%	-
High cervical ICA or CCA lesions below the clavicle	14.6%	1. 21.
Severe tandem lesions	4.0%	-


Pooled analysis: SAPPHIRE randomized and registry stent arms and CASES-PMS



Patient Selection

Age

CREST Lead-In Data Death and Stroke Rate By Age Group at 30 days

Straight forward lesions

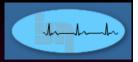
Difficult lesions

Type III Arch

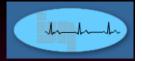
Patient Selection

- Anatomic difficulties
 - complex lesions& tortuous ICA

Rt ICA Stenosis & Lt. ICA occlusion



Reducing Risks


Patient selection

```
Recognise complications &
know ways to overcome them
hypotension & bradycardia
slow flow
dissection
full basket
vasospasm
stroke
hyperperfusion syndrome
```


Adequate Training

- 1. Proctoring
- 2. Attending courses / conferences
- 3. Structured Simulator Training Course

Simulator Training

Simulator Training

Simulator Training

Simulator Program for 2008

	Events	Participants
Carotid	2	7
Renal	4	27
Lower Limb	3	26
Basic Cardiology	5	35
Bifurcation PCI	1	6
Train The Trainers	1	5

History of Carotid Stenting

1996 1998 2000 PercusurgeAngioguard EPI

Late-1980's:

1994-95:

PTA

-Palmaz

Kachel

-Wallstent

Theron

2002:

-Dedicated Carotid

Nitinol

-Carotid Wallstents

Courtesy of Wholey

Further Data Required

Carotid Revascularisation Endarterectomy vs Stenting Trial (CREST) – NIH sponsored

2511 pt – asymptomatic & symptomatic not at high risk for surgery

International Carotid Stenting Study (ICSS)

1700 pt – asymptomatic head to head comparison CAS vs CEA

Summary

Improving awareness amongst the public & health care providers

Convincing the gatekeepers (neurologists)

Avoid a Turf War

Keep a registry

Await CREST & ICSS

help to ascertain position & niche of CAS

Summary

- Choose your patients properly
- Optimise medical therapy
- Perform the procedure safely
 - Ensure you have the proper equipment
 - Plan your strategy
 - Avoid excessive manipulation in arch & great vessels
 - Recognize and treat complications

Make it Simple!!