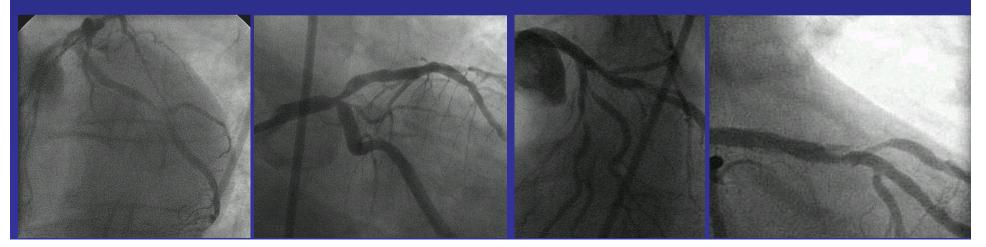


Approaches for bifurcation intervention according to the lesion characteristics

Angela Hoye MB ChB, PhD

Castle Hill Hospital Kingston-upon-Hull, UK

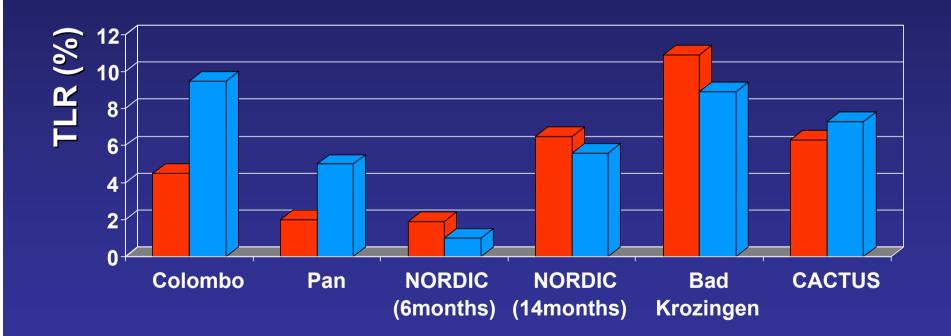

Disclosure Statement of Financial Interest

Within the past 12 months, I have received consulting fees / honoraria from the following:

- Cordis, Johnson & Johnson
- -Abbott Vascular
- -The Medicines Company
- -Boston Scientific

The challenge of bifurcations

- Bifurcation lesions are common
 - SYNTAX 73% patients were treated for a bifurcation
- Increased risk of MACE
- Heterogeneous lesion subtype
 - Size of vessels
 - Variable plaque distribution
 - Extent of side branch disease
 - Variable angulation



Provisional stenting

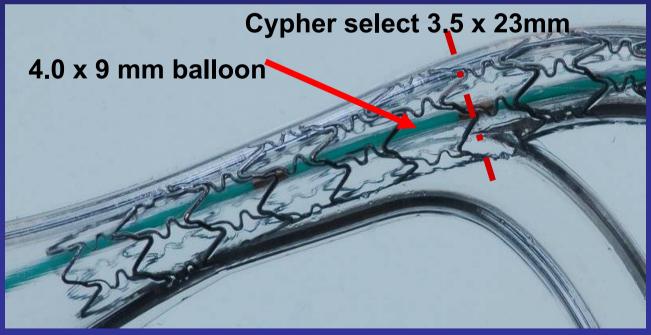
 Randomised studies have shown that the majority of bifurcation lesions can be successfully treated with 1 stent

Single

2-stent

Colombo et al Circ 2004; Pan et al AHJ 2004; Steigen et al Circ 2006; Jensen et al Eurointervention 2008; Ferenc et al EHJ epub 2008; Colombo et al

Approach to optimal provisional stenting: choice of stent size


• The proximal reference diameter is always larger than the distal reference diameter

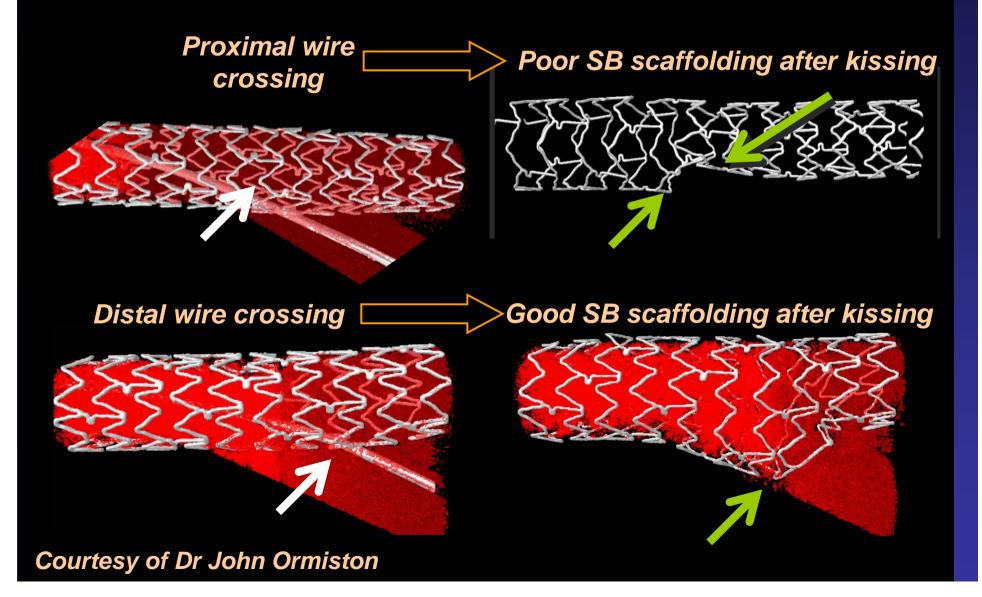
Finet et al Eurointervention 2007; Yifang Zhou et al. Phys. Med. Biol. 1999


Proximal Optimization Technique (POT)

- Recommendation is to choose stent diameter related to the size of the <u>distal</u> main vessel
- The proximal part of the stent is then post-dilated (proximal optimisation technique (POT))

Courtesy of Dr Olivier Darremont

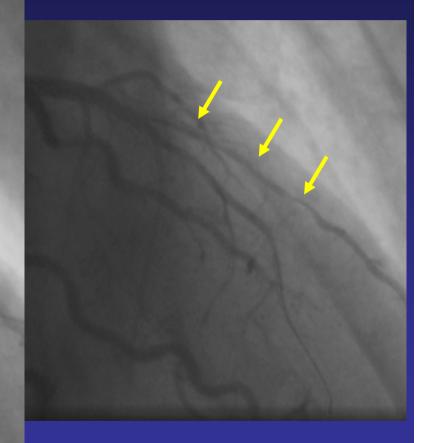
POT technique



Proximal optimisation technique

- Supports SB scaffolding
- Facilitates complete coverage of SB ostium with a second stent (where necessary)
- Assists a "distal" cross as opposed to a proximal one to improve scaffolding of the side branch

Relationship of wire crossing to side branch scaffolding

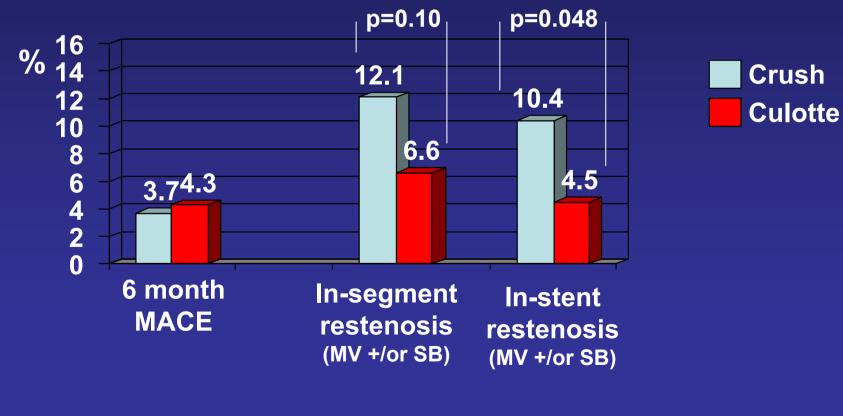

Side branch lesions are usually relatively short					
	TULIPE	Colombo	NORDIC	Bad Krozingen	
Patients (n)	187	85	207*	101*	
Reference diameter (mm)	2.7 + 0.4	2.1 + 0.3	2.6 + 0.4	2.39 ±	
May be some situations to consider a 2-stent strategy from the outset					

Results for the provisional stenting group

Brunel et al CCI 2006;68:67-73; Colombo et al Circulation 2004;109:1244-49; Steigen et al Circulation 2006;114:1955-61; Ferenc et al EHJ epub 2008

More complex bifurcation

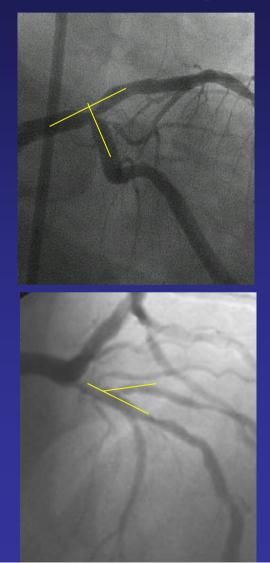
Final result after Culotte stenting

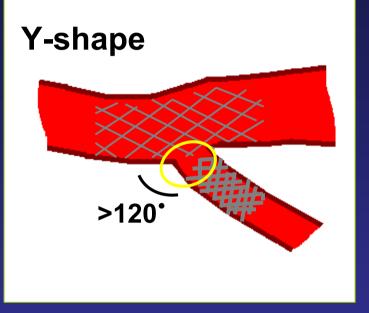

2-stent strategy: which method?

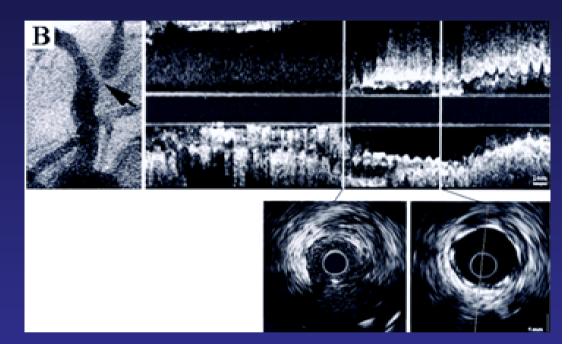
	No. pts	MV binary restenosis (%)	SB binary restenosis (%)	MACE (%)
Crush	231	9	25	16% at 9 months
Mini crush	45	12	2	16% at 8 months
SKS	100	-	-	10% at 6 months
Culotte	23	19	13	15% at 8 months

Hoye et al JACC 2006;47, Galassi et al CCI 2007 epub, Sharma et al AJC 2004;94, Hoye et al Int J Cardiovasc Interv 2005;7

2-stent strategy: which method?

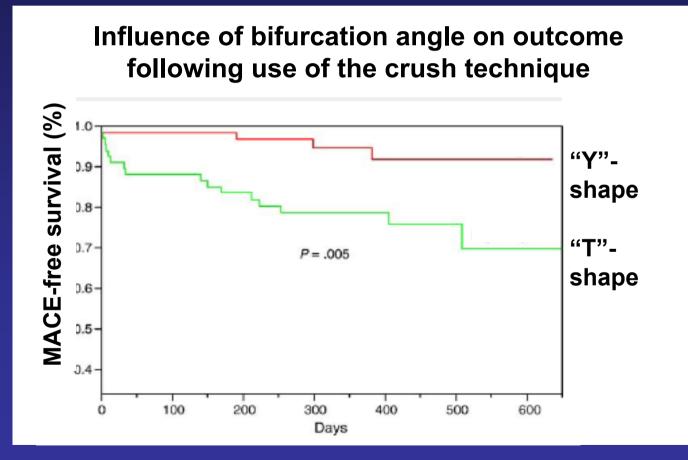

 424 patients randomised to Crush versus Culotte stenting


Erglis et al CircInterventions 2008


How do I decide which strategy to employ?

Assess the angulation

Y-shape incidence ~ 75%

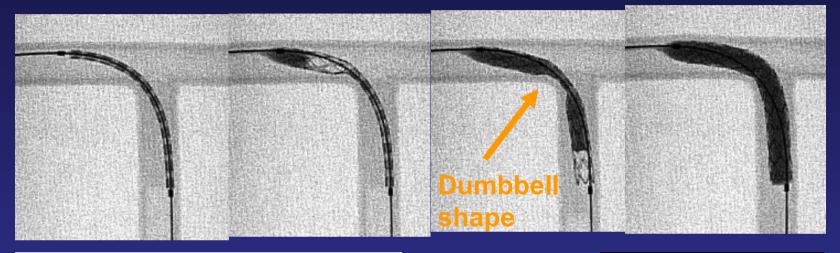

Ostial restenosis was associated with incomplete coverage

✓ Culotte✓ Crush

×T-stent

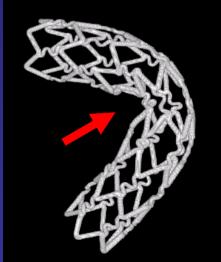
Lemos et al Circulation 2003;108:257-60

Crush stenting: influence of bifurcation angle

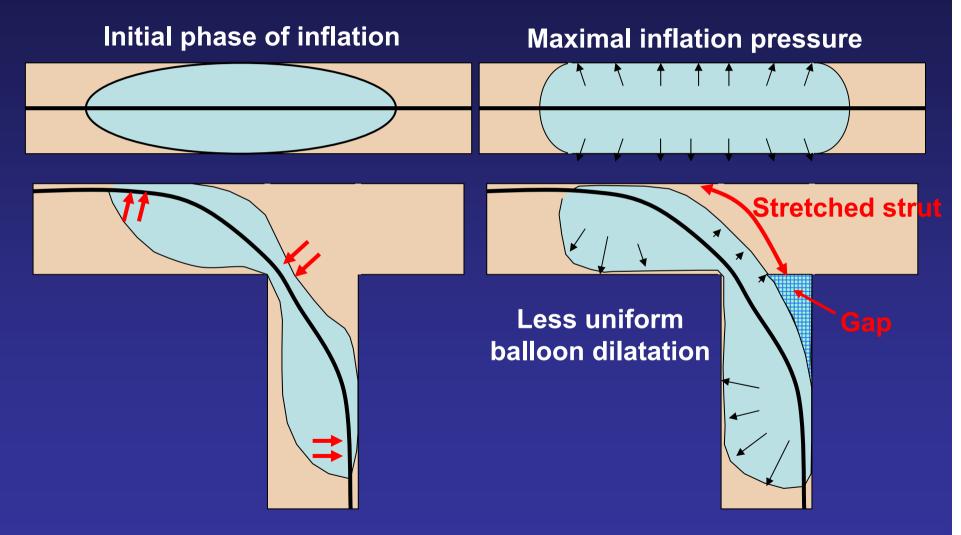

Dzavik et al AHJ 2006;152:762-9

Culotte stenting

Independent predictors of binary restenosis	Odds ratio (95% Cl)	p value
Age (increase of 10 years)	2.38 (1.21-4.96)	0.01
Bifurcation angle (increase of 10°)	1.53 (1.04-2.23)	0.03
Baseline main vessel DS (increase of 10%)	1.47 (1.03-2.09)	0.03
SB ref. vessel diameter (decrease by 1mm)	31.83 (1.71-592.77)	0.02
Kissing balloon post-dilatation	0.37 (0.13-1.10)	0.07

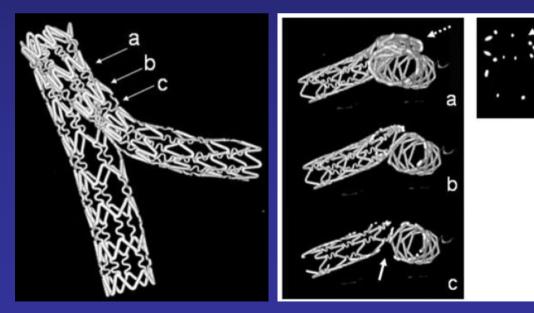

Adriaenssens et al EHJ 2008;29:2868-76

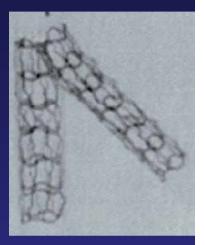
Stents don't like large bends


Maximal inflation pressure

GW position was biased in the central core of the balloon and did not change during inflation.

Courtesy of Dr Murasato


Potential problem with stenting high-angled lesions



Does hinge motion cause stent fracture of the stretched struts?

Other strategies

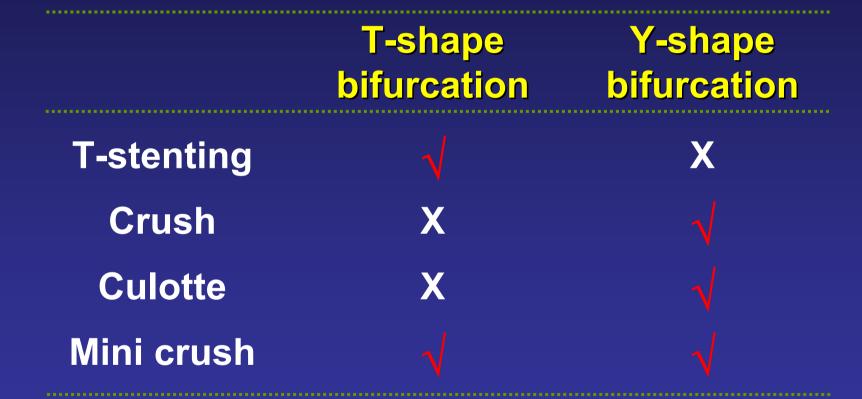
- V-stenting: useful for only the very small number of bifurcations that involve significant disease in the SB and distal MB only (Medina 0.1.1)
- Kissing stents:

Murasato et al CCI 2007;70:211-20

Other strategies

- Recent focus has been paid to the mini-crush technique
 - Relatively quick and easy to perform
 - Suitable technique irrespective of angle
 But.....

Mini-crush: results


• Registry data of 457 patients

		9 month a	2 years	
	No. pts	MV binary restenosis (%)	SB binary restenosis (%)	MACE (%)
Mini crush	199	12	9	21
T-stent 1-stent	170	17	21*	26
T-stent 2-stents	88	19	19**	26

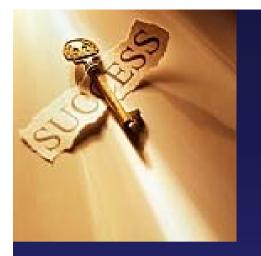
* p≤0.001, **p≤0.01

Galassi et al JACC Interv 2009;2:185-94

Choice of stenting strategy: the importance of angulation

• All these techniques can be used if the SB requires stenting in a provisional strategy

Kissing balloon postdilatation


Main vesse		Kissing balloon dilatation	No kissing balloon dilatation	p value
FU angiography, n (9	/o)	94 (77%)	92 (77%)	1.0
Reference diameter	(mm)	2.78 ± 0.61	$\textbf{2.64} \pm \textbf{0.57}$	0.1
Pre MLD (mm)		$\textbf{0.97} \pm \textbf{0.53}$	0.89 ± 0.52	0.3
DS (%)		66 ± 17	66 ± 18	0.7
Lesion length	(mm)	14.84 ± 10.40	15.97 ± 10.55	0.5
Post MLD (mm)		2.89 ± 0.54	$\textbf{2.55} \pm \textbf{0.53}$	<0.001
DS (%)		12 ± 9	14 ± 9	0.2
FU MLD (mm)		2.64 ± 0.81	$\textbf{2.21} \pm \textbf{0.75}$	<0.001
DS (%)		20 ± 20	26 ± 19	0.04
Late loss (mm)		0.26 ± 0.65	$\textbf{0.35} \pm \textbf{0.64}$	0.3
Binary restenosis ra	te (%)	6 (6%)	11 (12%)	0.2

Hoye et al JACC 2006; 47: 1949-1958

Kissing balloon postdilatation

Side branch		Kissing balloon dilatation	No kissing balloon dilatation	p value
Follo	<i>w</i> -up angiography n (%)	94 (77%)	92 (77%)	1.0
Refer	ence diameter (mm)	2.45±0.53	2.32±0.49	0.1
Pre	MLD (mm)	0.90±0.53	0.88±0.52	0.8
	DS (%)	63±21	62±20	0.8
	Lesion length (mm)	9.01±6.06	8.97±6.03	1.0
Post	MLD (mm)	2.43±0.53	2.10±0.44	<0.00001
	DS (%)	13±9	18±10	<0.0001
FU	MLD (mm)	2.18±0.71	1.52±0.86	<0.00001
	DS (%)	21±18	41±32	<0.00001
Late I	oss (mm)	0.24±0.50	0.58±0.77	<0.001
Binar	y restenosis rate (%)	9 (10%)	38 (41%)	<0.00001

Hoye et al JACC 2006; 47: 1949-1958

Summary & conclusions

- Provisional stenting strategy is appropriate for the majority of bifurcations
- But consider a 2-stent strategy if the SB is important and heavily diseased
- Choice of 2-stent strategy depends on the degree of angulation
- Become familiar with 1 or 2 stenting techniques
- Optimal kissing balloon post-dilatation is mandatory when 2-stents are implanted