New Technologies for Bifurcation: Main Vessel Centric vs Side Branch Centric

Alan C. Yeung, MD Li Ka Shing Professor of Medicine Director, Interventional Cardiology Chief, Division of Cardiovascular Medicine Stanford University School of Medicine

Conflict of Interest

Scientific Advisory Board to

- Abbott Vascular
- Boston Scientific Corpoaration
- Cordis
- Medtronic

Stents are not designed for bifurcations

Does this damage pre-dispose to stent thrombosis?

3 Dimensional Casts of Coronary Tree (Aorta to terminal branches (<1mm)

- Angle
- Branching
- Curvature
- Tortuosity
- Lesions Ecc.
- Intersections

Summary

Bifurcation diameters ~ to previous findings

MV: Wide Range (1.7 to 4.2),

proximal mean= 2.86

distal mean= 2.39

SB: Wide Range (1.6 to 2.6), mean 2.28

Four types of Asymmetric Ostial Geometry:

- Multifaceted transition (high magnification detail)
- Oval rather than round ostium
- SB Taper 3-fold greater than MB
- Side branch take off angles
 - Proximal (obtuse)
 - Distal (acute)

Conclusions

Distorted stent or Distorted anatomy

- Complex transition zone from the main vessel to the side branch with many asymmetric features
- Anatomic distortion likely with symmetric (cylindrical) designs
 - Strut protrusion/injury
 - Gaps
 - Incomplete wall apposition

• Matching design to asymmetric ostial geometry may minimize implant injury, enhance scaffolding and improve outcomes

Bifurcated Stent Approaches

Twin-Rail (by Invatec)

Stentys (by Stentys)

Petal (by Boston)

Frontier (by Abbott)

Antares[™] (by TriReme)

Technology

Opening possible at any level : initial positioning irrelevant to procedure success.

OPEN I Study Design

Design

- DESIGN: Prospective, nonrandomized, single-arm, multi-center study
- OBJECTIVE: To evaluate the safety and feasibility in bifurcated coronary lesions
- Endpoints: Procedural success MACE @ discharge & 30 days
- Events adjudicated by CEC
- Independent monitoring: MedPass
- Core Lab: Cardialysis

stent

Simple Stent Solutions

Cumulative adverse events

Main Vessel Centric-Stentys

Advantages

- Single wire delivery
- Self expanding
- Open to SB at any level
- Preserve elliptical geometry to MB and SB

Disadvantages

- Self expanding
- Only cover SB on one side of carina

MDT BRANCH Bifurcation Stent Main Features

Stent - Driver platform

 Three stents optimally welded to accommodate multiple bifurcation angles

Delivery System - Endeavor Sprint technology

- Dual Rapid Exchange
- Simultaneous inflation / deflation
- Tapered side-branch balloon
- Carina marker band to aids placement of side branch stent

SB (mm)	DMB (mm)	PMV (mm)	Nom. (atm)	RBP (atm)
2.5	3.5	4.3	9	16
2.5	3.0	3.8	9	16

MDT Branch Bifurcation Stent Design

- 1. Acute success (device, lesion, procedure)
- 2. Total fluoroscopy time
- 3. Total volume of contrast used

- 4. Total index PCI procedure time
- 5. Composite of cardiac death, target vessel MI and clinically driven TVR @ 6, 9 and 12 mo
- 6. TLR rate at 9 months

Main Vessel Centric-MDT

Advantages

- Good and complete coverage of MB and SB
- No overlapping struts
- All angles of take-off
- Easy to re-cross to add lengths

Disadvantages

- Profile, turning and wire wrap
- Size metric limited
- Alignment issues
- Not-DES

Antares[™] – Polymer Model

Automatic deployment of ostial crown upon expansion of main stent body – single balloon is use

Ostial Locators:

improves alignment provide structural support improves apposition minimize injury

2/12/08 Stanford, A. Yeung Antares™ II, Cx

From Antares[™] II to Antares[™] SX

	Prior Generation: Antares™ II	Current Generation: Antares™ SX (CE mark approved)	
Stent		Expanded ostial opening for bigger branches Connectors removed for flexibility & crossing	
Delivery System	Single balloon to decrease profile	More predictable torque	
Markers	2 radiopaque proximal markers	Thicker markers improved radio-opacity	
Side Wire	0.012"	0.014" supports positioning & re-crossing Longer coil on wire for smoother tracking	

FIM Experience

Pre-procedure

Deployment

Final result

Successful deployment of Antares[™] stent in RCA case, Sao Paulo, Brazil

Antares stenting, SB PTCA

TOP Study (<u>TMI Ostial Preservation</u>)

- Goal: Acute performance & device optimization
- Multi-center, single arm study
- Up to 100 patients
 - 45 enrolled/ 7 centers as of Oct.1, 2008
- Primary Endpoint: Acute procedural success
- Side branch treatment operator discretion
 - If stent, protocol mandated TAXUS liberte

Enrollment on going – status update

Main Vessel Centric-TMI

Advantages

- Self lifting SB struts
- No wire wrap issues
- Markers to align the SB struts

Disadvantages

- Minimal SB coverage
- Need to wire the SB using a wire under the stent
- Need to torque the system

Sideguard Ostium Protection Device

Sideguard address the complexities associated with ostial and bifurcated lesions

Precise BE Delivery System

Peel-away Split Sheath, Balloon Expandable Delivery **Bare Metal Sideguard OPD**

Anatomically-shaped, Self-Expanding (SE) Stent

- Sideguard is a self-expanding, anatomically-shaped stent
- Target[™] Catheter is a balloon-release delivery system for SE stents

Cappella Sideguard OPD

Cup

- Flared end, conforms to ostium of side branch
- Excellent ostial coverage & Protection

Gimbal

- Provides expanding
 force to open the side branch
- Transition zone between cup and anchor

Anchor

- "Spacer" region to improve anchoring keeping stent from migrating
- Enhances crossing flexibility

Sideguard I and II QCA @ 6 mos

	MV (50 pts)	SB (47 pts)
MLD (mm)		
In-stent	2.59 ~ 0.50	1.83 ~ 0.53
In-segment	2.20 ~ 0.46	1.69 ~ 0.49
% DS		
In-stent	14.00 ~ 14.34	18.60 ~ 21.06
In-segment	27.44 ~ 14.75	26.93 ~ 18.06
Late Loss (mm)		
In-stent	0.28 ~ 0.50	0.38 ~ 0.50
In-segment	0.23 ~ 0.60	0.38 ~ 0.50
Binary Restenosis		
In-stent	4.0% (2/50)	6.4% (3/47)
In-segment	8.0% (4/50)	8.5% (4/47)

Sideguard I and II IVUS Substudy (11 pts)

Case in Group A

Case in Group B

Columbia University Medical Center

The University Hospital of Columbia and Cornel

Hiroshi Doi, Akiko Maehara, Gary S. Mintz

Side Branch Centric-Cappella

Advantages

- Treat side branch first
- Similar to T-stenting
- Self expanding
- Preserve elliptical anatomy

Disadvantages

- Overlapping struts in the MV near ostium
- Self expanding
- May need to re-open MV stent struts

Tryton Side Branch Stent

Side Branch Region Standard Design

> Transition Zone Coverage Hoop Strength

Main Vessel Region 3 Fronds - Minimal Coverage Wedding Band

Main Vessel **Cobalt Chromium** Strut Thickness: 0.003" Diameter: 2.5 mm

Side Branch

2. Deploy Side Branch Stent

4. Position Main Vessel Stent

6. Post-Dilate Side Branch

Tryton Side Branch Stent

FIM - Cumulative Late Loss

Eurointerv 2008;3:546-552

Side Branch Centric-Tryton

Advantages

- Treat side branch first
- Coverage of all zones
- Similar to T-stenting

Disadvantages

- Overlapping struts in the MV
- Need to re-open MV stent struts

Dedicated Bifurcation Stents

	Main Vessel Centric	Side-Branch Centric
DES Program	Not yet	Mainly No
Side Branch Angle	Yes	Νο
Wire Wrap/Device to turn	Yes	Νο
Overlap Struts (M/S)	Side (if new stent is needed)	Main (100%)
New Carina	Y (Devax)	Ν
Predetermined Ostial Geometry	Y	Ν
Accuracy	Fair	Excellent